Immediate Effects of Transcutaneous Spinal Cord Stimulation on Motor Function in Chronic, Sensorimotor Incomplete Spinal Cord Injury.

human non-invasive spinal cord injury spinal cord stimulation spinal reflexes voluntary ankle control walking

Journal

Journal of clinical medicine
ISSN: 2077-0383
Titre abrégé: J Clin Med
Pays: Switzerland
ID NLM: 101606588

Informations de publication

Date de publication:
02 Nov 2020
Historique:
received: 12 10 2020
revised: 22 10 2020
accepted: 30 10 2020
entrez: 5 11 2020
pubmed: 6 11 2020
medline: 6 11 2020
Statut: epublish

Résumé

Deficient ankle control after incomplete spinal cord injury (iSCI) often accentuates walking impairments. Transcutaneous electrical spinal cord stimulation (tSCS) has been shown to augment locomotor activity after iSCI, presumably due to modulation of spinal excitability. However, the effects of possible excitability modulations induced by tSCS on ankle control have not yet been assessed. This study investigated the immediate (i.e., without training) effects during single-sessions of tonic tSCS on ankle control, spinal excitability, and locomotion in ten individuals with chronic, sensorimotor iSCI (American Spinal Injury Association Impairment Scale D). Participants performed rhythmic ankle movements (dorsi- and plantar flexion) at a given rate, and irregular ankle movements following a predetermined trajectory with and without tonic tSCS at 15 Hz, 30 Hz, and 50 Hz. In a subgroup of eight participants, the effects of tSCS on assisted over-ground walking were studied. Furthermore, the activity of a polysynaptic spinal reflex, associated with spinal locomotor networks, was investigated to study the effect of the stimulation on the dedicated spinal circuitry associated with locomotor function. Tonic tSCS at 30 Hz immediately improved maximum dorsiflexion by +4.6° ± 0.9° in the more affected lower limb during the rhythmic ankle movement task, resulting in an increase of +2.9° ± 0.9° in active range of motion. Coordination of ankle movements, assessed by the ability to perform rhythmic ankle movements at a given target rate and to perform irregular movements according to a trajectory, was unchanged during stimulation. tSCS at 30 Hz modulated spinal reflex activity, reflected by a significant suppression of pathological activity specific to SCI in the assessed polysynaptic spinal reflex. During walking, there was no statistical group effect of tSCS. In the subgroup of eight assessed participants, the three with the lowest as well as the one with the highest walking function scores showed positive stimulation effects, including increased maximum walking speed, or more continuous and faster stepping at a self-selected speed. Future studies need to investigate if multiple applications and individual optimization of the stimulation parameters can increase the effects of tSCS, and if the technique can improve the outcome of locomotor rehabilitation after iSCI.

Identifiants

pubmed: 33147884
pii: jcm9113541
doi: 10.3390/jcm9113541
pmc: PMC7694146
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : University of Zurich
ID : Clinical Research Priority Program (CRPP) for NeuroRehab

Références

Phys Med Rehabil Clin N Am. 2014 Aug;25(3):505-17, vii
pubmed: 25064785
Spinal Cord. 2000 Aug;38(8):473-89
pubmed: 10962608
Neurotherapeutics. 2018 Jul;15(3):684-696
pubmed: 29959653
Nature. 2018 Nov;563(7729):65-71
pubmed: 30382197
Exp Brain Res. 1996 Mar;108(3):450-62
pubmed: 8801125
Neurology. 2010 Apr 20;74(16):1271-8
pubmed: 20404308
Nat Neurosci. 2018 Dec;21(12):1728-1741
pubmed: 30382196
J Neurotrauma. 2015 Dec 15;32(24):1968-80
pubmed: 26077679
J Neurotrauma. 2004 Oct;21(10):1371-83
pubmed: 15672628
J Neuroeng Rehabil. 2018 Nov 12;15(1):102
pubmed: 30419945
J Neuroeng Rehabil. 2014 Mar 31;11:46
pubmed: 24684813
Appl Neurophysiol. 1988;51(1):29-44
pubmed: 3260464
Artif Organs. 2015 Oct;39(10):E176-86
pubmed: 26450344
Mult Scler. 2016 Oct;22(11):1463-1475
pubmed: 26762672
J Neurophysiol. 1999 Jan;81(1):129-39
pubmed: 9914274
Spinal Cord. 2006 Nov;44(11):680-7
pubmed: 16344848
Front Neurol. 2017 Feb 03;8:17
pubmed: 28217104
Lancet. 2011 Jun 4;377(9781):1938-47
pubmed: 21601270
Physiol Behav. 1980 Jul;25(1):49-51
pubmed: 7413819
J Electromyogr Kinesiol. 2000 Oct;10(5):361-74
pubmed: 11018445
J Neurotrauma. 2020 Feb 1;37(3):481-493
pubmed: 31333064
Brain. 2015 Mar;138(Pt 3):577-88
pubmed: 25582580
Sci Rep. 2019 Mar 26;9(1):5232
pubmed: 30914746
Spinal Cord. 2000 Sep;38(9):524-31
pubmed: 11035472
J Neurol. 2008 Feb;255(2):273-9
pubmed: 18204802
Spinal Cord. 2011 May;49(5):582-7
pubmed: 21060314
J Neurophysiol. 2014 Nov 1;112(9):2164-75
pubmed: 25122715
Brain Res. 1980 Oct 6;198(2):419-26
pubmed: 7407606
Sci Rep. 2018 Mar 21;8(1):4984
pubmed: 29563533
Cent Nerv Syst Trauma. 1986 Spring;3(2):145-52
pubmed: 3490313
Ann N Y Acad Sci. 1998 Nov 16;860:360-76
pubmed: 9928325
Hum Mov Sci. 2007 Apr;26(2):275-95
pubmed: 17343947
J Neurophysiol. 2005 Aug;94(2):934-42
pubmed: 15800077
Spinal Cord. 2005 Oct;43(10):577-86
pubmed: 15838527
Nat Rev Neurol. 2010 Mar;6(3):167-74
pubmed: 20101254
Gait Posture. 2011 Jul;34(3):409-14
pubmed: 21763140
Brain. 2009 Aug;132(Pt 8):2196-205
pubmed: 19460795
CNS Neurosci Ther. 2016 Apr;22(4):262-70
pubmed: 26890324
Front Neurosci. 2017 Jun 08;11:333
pubmed: 28642680
PLoS One. 2019 Dec 26;14(12):e0227057
pubmed: 31877192
J Neurosci. 2013 Dec 4;33(49):19326-40
pubmed: 24305828
Neurol Res. 2008 Feb;30(1):52-60
pubmed: 18387262
Neurorehabil Neural Repair. 2012 Feb;26(2):188-96
pubmed: 21921130
Front Neurorobot. 2017 Oct 27;11:57
pubmed: 29163120
Spinal Cord. 2005 Jan;43(1):27-33
pubmed: 15520841
Muscle Nerve. 2007 Mar;35(3):327-36
pubmed: 17117411
J Clin Neurophysiol. 2008 Aug;25(4):210-7
pubmed: 18677185
Brain. 2014 May;137(Pt 5):1394-409
pubmed: 24713270
Clin Neurophysiol. 2010 Dec;121(12):2152-8
pubmed: 20554473
Exp Brain Res. 1997 Jun;115(2):234-46
pubmed: 9224852
Spinal Cord. 2000 Jul;38(7):394-402
pubmed: 10962598
Artif Organs. 2011 Mar;35(3):257-62
pubmed: 21401670
Neurorehabil Neural Repair. 2016 Mar;30(3):233-43
pubmed: 26089308
J Neurotrauma. 2019 May 1;36(9):1435-1450
pubmed: 30362876
Ann Phys Rehabil Med. 2015 Sep;58(4):232-237
pubmed: 26100230
Appl Neurophysiol. 1987;50(1-6):453-4
pubmed: 3502448
Spinal Cord. 2008 Jul;46(7):500-6
pubmed: 18209742
Nat Med. 2018 Nov;24(11):1677-1682
pubmed: 30250140
N Engl J Med. 2018 Sep 27;379(13):1244-1250
pubmed: 30247091
Phys Ther. 2002 Jul;82(7):707-15
pubmed: 12088467
J Neurophysiol. 2015 Jul;114(1):485-92
pubmed: 25995355
Exp Brain Res. 2004 Feb;154(3):308-26
pubmed: 14586532
PLoS One. 2016 Jan 21;11(1):e0147479
pubmed: 26797502
Spinal Cord. 2016 Sep;54(9):687-94
pubmed: 26902460
IEEE Trans Neural Syst Rehabil Eng. 2010 Dec;18(6):637-45
pubmed: 21138794
PLoS One. 2018 Jan 30;13(1):e0192013
pubmed: 29381748
J Neurotrauma. 2020 Nov 1;37(21):2302-2314
pubmed: 32552335
Spinal Cord. 2004 Jul;42(7):401-16
pubmed: 15124000
J Spinal Cord Med. 2014 Mar;37(2):202-11
pubmed: 24090290
Curr Opin Neurobiol. 2015 Aug;33:25-33
pubmed: 25643847
Neurotherapeutics. 2016 Apr;13(2):284-94
pubmed: 26843089

Auteurs

Christian Meyer (C)

Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland.

Ursula S Hofstoetter (US)

Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria.

Michèle Hubli (M)

Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland.

Roushanak H Hassani (RH)

Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland.

Carmen Rinaldo (C)

Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland.

Armin Curt (A)

Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland.

Marc Bolliger (M)

Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland.

Classifications MeSH