Stomatal closure of tomato under drought is driven by an increase in soil-root hydraulic resistance.
Solanum lycopersicum L.
belowground hydraulic
hydraulic conductivity
leaf water potential
soil drying
transpiration
water stress
Journal
Plant, cell & environment
ISSN: 1365-3040
Titre abrégé: Plant Cell Environ
Pays: United States
ID NLM: 9309004
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
09
05
2020
accepted:
01
11
2020
pubmed:
6
11
2020
medline:
6
7
2021
entrez:
5
11
2020
Statut:
ppublish
Résumé
The fundamental question as to what triggers stomatal closure during soil drying remains contentious. Thus, we urgently need to improve our understanding of stomatal response to water deficits in soil and atmosphere. Here, we investigated the role of soil-plant hydraulic conductance (K
Substances chimiques
Soil
0
Water
059QF0KO0R
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
425-431Informations de copyright
© 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
Références
Ahmed, M. A., Passioura, J., & Carminati, A. (2018). Hydraulic processes in roots and the rhizosphere pertinent to increasing yield of water-limited grain crops: A critical review. Journal of Experimental Botany, 69, 3255-3265.
Anderegg, W. R. L., Wolf, A., Arango-Velez, A., Choat, B., Chmura, D. J., Jansen, S., … Pacala, S. (2017). Plant water potential improves prediction of empirical stomatal models. PLoS One, 12, e0185481.
Bartlett, M. K., Klein, T., Jansen, S., Choat, B., & Sack, L. (2016). The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proceedings of the National Academy of Sciences, 113, 13098-13103.
Brooks, R. H., & Corey, A. T. (1966). Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division, 92, 61-90.
Buckley, T. N. (2005). The control of stomata by water balance. New Phytologist, 168, 275-292.
Buckley, T. N. (2019). How do stomata respond to water status? New Phytologist, 224, 21-36.
Cai, G., Ahmed, M. A., Dippold, M. A., Zarebanadkouki, M., & Carminati, A. (2020). Linear relation between leaf xylem water potential and transpiration in pearl millet during soil drying. Plant and Soil, 447, 565-578.
Cai, G., Ahmed, M. A., Reth, S., Reiche, M., Kolb, A., & Carminati, A. (2020). Measurement of leaf xylem water potential and transpiration during soil drying using a root pressure chamber system. Acta Horticulturae.
Carminati, A., & Javaux, M. (2020). Soil rather than xylem vulnerability controls Stomatal response to drought. Trends in Plant Science, 25, 868-880.
Carminati, A., Passioura, J. B., Zarebanadkouki, M., Ahmed, M. A., Ryan, P. R., Watt, M., & Delhaize, E. (2017). Root hairs enable high transpiration rates in drying soils. New Phytologist, 216, 771-781.
Carminati, A., Vetterlein, D., Koebernick, N., Blaser, S., Weller, U., & Vogel, H.-J. (2013). Do roots mind the gap? Plant and Soil, 367, 651-661.
Carminati, A., Zarebanadkouki, M., Kroener, E., Ahmed, M. A., & Holz, M. (2016). Biophysical rhizosphere processes affecting root water uptake. Annals of Botany, 118, 561-571.
Corso, D., Delzon, S., Lamarque, L. J., Cochard, H., Torres-Ruiz, J. M., King, A., & Brodribb, T. (2020). Neither xylem collapse, cavitation or changing leaf conductance drive stomatal closure in wheat. Plant, Cell & Environment, 43, 854-865.
Couvreur, V., Vanderborght, J., & Javaux, M. (2012). A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach. Hydrology and Earth System Sciences, 16, 2957-2971.
Deery, D. M., Passioura, J. B., Condon, J. R., & Katupitiya, A. (2013). Uptake of water from a Kandosol subsoil. II. Control of water uptake by roots. Plant and Soil, 368, 649-667.
Dodd, I. C. (2005). Root-to-shoot Signalling: Assessing the roles of ‘up’ in the up and down world of long-distance Signalling in Planta. Plant and Soil, 274, 251-270.
Gollan, T., Passioura, J. B., & Munns, R. (1986). Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves. Australian Journal of Plant Physiology, 13, 459-464.
Guo, K., Kong, W. W., & Yang, Z. M. (2009). Carbon monoxide promotes root hair development in tomato. Plant, Cell & Environment, 32, 1033-1045.
Hayat, F., Ahmed, M. A., Zarebanadkouki, M., Cai, G., & Carminati, A. (2019). Measurements and simulation of leaf xylem water potential and root water uptake in heterogeneous soil water contents. Advances in Water Resources, 124, 96-105.
Hayat, F., Ahmed, M. A., Zarebanadkouki, M., Javaux, M., Cai, G., & Carminati, A. (2020). Transpiration reduction in maize (Zea mays L) in response to soil drying. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01695.
Holbrook, N. M., Shashidhar, V. R., James, R. A., & Munns, R. (2002). Stomatal control in tomato with ABA-deficient roots: Response of grafted plants to soil drying. Journal of Experimental Botany, 53, 1503-1514.
Martin-StPaul, N., Delzon, S., & Cochard, H. (2017). Plant resistance to drought depends on timely stomatal closure. Ecology Letters, 20, 1437-1447.
Passioura, J. B. (1980). The transport of water from soil to shoot in wheat seedlings. Journal of Experimental Botany, 31, 333-345.
Passioura, J. B., & Munns, R. (1984). Hydraulic resistance of plants. II. Effects of rooting medium, and time of day, in barley and Lupin. Functional Plant Biology, 11, 341-350.
Peters, A., Iden, S. C., & Durner, W. (2015). Revisiting the simplified evaporation method: Identification of hydraulic functions considering vapor, film and corner flow. Journal of Hydrology, 527, 531-542.
Rodriguez-Dominguez, C. M., & Brodribb, T. J. (2020). Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytologist, 225, 126-134.
Skelton, R. P., Brodribb, T. J., & Choat, B. (2017). Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. New Phytologist, 214, 561-569.
Sperry, J. S., & Love, D. M. (2015). What plant hydraulics can tell us about responses to climate-change droughts. New Phytologist, 207, 14-27.
Sperry, J. S., Wang, Y., Wolfe, B. T., Mackay, D. S., Anderegg, W. R. L., McDowell, N. G., & Pockman, W. T. (2016). Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytologist, 212, 577-589.
van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892-898.