Stomatal closure of tomato under drought is driven by an increase in soil-root hydraulic resistance.


Journal

Plant, cell & environment
ISSN: 1365-3040
Titre abrégé: Plant Cell Environ
Pays: United States
ID NLM: 9309004

Informations de publication

Date de publication:
02 2021
Historique:
received: 09 05 2020
accepted: 01 11 2020
pubmed: 6 11 2020
medline: 6 7 2021
entrez: 5 11 2020
Statut: ppublish

Résumé

The fundamental question as to what triggers stomatal closure during soil drying remains contentious. Thus, we urgently need to improve our understanding of stomatal response to water deficits in soil and atmosphere. Here, we investigated the role of soil-plant hydraulic conductance (K

Identifiants

pubmed: 33150971
doi: 10.1111/pce.13939
doi:

Substances chimiques

Soil 0
Water 059QF0KO0R

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

425-431

Informations de copyright

© 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

Références

Ahmed, M. A., Passioura, J., & Carminati, A. (2018). Hydraulic processes in roots and the rhizosphere pertinent to increasing yield of water-limited grain crops: A critical review. Journal of Experimental Botany, 69, 3255-3265.
Anderegg, W. R. L., Wolf, A., Arango-Velez, A., Choat, B., Chmura, D. J., Jansen, S., … Pacala, S. (2017). Plant water potential improves prediction of empirical stomatal models. PLoS One, 12, e0185481.
Bartlett, M. K., Klein, T., Jansen, S., Choat, B., & Sack, L. (2016). The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proceedings of the National Academy of Sciences, 113, 13098-13103.
Brooks, R. H., & Corey, A. T. (1966). Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division, 92, 61-90.
Buckley, T. N. (2005). The control of stomata by water balance. New Phytologist, 168, 275-292.
Buckley, T. N. (2019). How do stomata respond to water status? New Phytologist, 224, 21-36.
Cai, G., Ahmed, M. A., Dippold, M. A., Zarebanadkouki, M., & Carminati, A. (2020). Linear relation between leaf xylem water potential and transpiration in pearl millet during soil drying. Plant and Soil, 447, 565-578.
Cai, G., Ahmed, M. A., Reth, S., Reiche, M., Kolb, A., & Carminati, A. (2020). Measurement of leaf xylem water potential and transpiration during soil drying using a root pressure chamber system. Acta Horticulturae.
Carminati, A., & Javaux, M. (2020). Soil rather than xylem vulnerability controls Stomatal response to drought. Trends in Plant Science, 25, 868-880.
Carminati, A., Passioura, J. B., Zarebanadkouki, M., Ahmed, M. A., Ryan, P. R., Watt, M., & Delhaize, E. (2017). Root hairs enable high transpiration rates in drying soils. New Phytologist, 216, 771-781.
Carminati, A., Vetterlein, D., Koebernick, N., Blaser, S., Weller, U., & Vogel, H.-J. (2013). Do roots mind the gap? Plant and Soil, 367, 651-661.
Carminati, A., Zarebanadkouki, M., Kroener, E., Ahmed, M. A., & Holz, M. (2016). Biophysical rhizosphere processes affecting root water uptake. Annals of Botany, 118, 561-571.
Corso, D., Delzon, S., Lamarque, L. J., Cochard, H., Torres-Ruiz, J. M., King, A., & Brodribb, T. (2020). Neither xylem collapse, cavitation or changing leaf conductance drive stomatal closure in wheat. Plant, Cell & Environment, 43, 854-865.
Couvreur, V., Vanderborght, J., & Javaux, M. (2012). A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach. Hydrology and Earth System Sciences, 16, 2957-2971.
Deery, D. M., Passioura, J. B., Condon, J. R., & Katupitiya, A. (2013). Uptake of water from a Kandosol subsoil. II. Control of water uptake by roots. Plant and Soil, 368, 649-667.
Dodd, I. C. (2005). Root-to-shoot Signalling: Assessing the roles of ‘up’ in the up and down world of long-distance Signalling in Planta. Plant and Soil, 274, 251-270.
Gollan, T., Passioura, J. B., & Munns, R. (1986). Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves. Australian Journal of Plant Physiology, 13, 459-464.
Guo, K., Kong, W. W., & Yang, Z. M. (2009). Carbon monoxide promotes root hair development in tomato. Plant, Cell & Environment, 32, 1033-1045.
Hayat, F., Ahmed, M. A., Zarebanadkouki, M., Cai, G., & Carminati, A. (2019). Measurements and simulation of leaf xylem water potential and root water uptake in heterogeneous soil water contents. Advances in Water Resources, 124, 96-105.
Hayat, F., Ahmed, M. A., Zarebanadkouki, M., Javaux, M., Cai, G., & Carminati, A. (2020). Transpiration reduction in maize (Zea mays L) in response to soil drying. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01695.
Holbrook, N. M., Shashidhar, V. R., James, R. A., & Munns, R. (2002). Stomatal control in tomato with ABA-deficient roots: Response of grafted plants to soil drying. Journal of Experimental Botany, 53, 1503-1514.
Martin-StPaul, N., Delzon, S., & Cochard, H. (2017). Plant resistance to drought depends on timely stomatal closure. Ecology Letters, 20, 1437-1447.
Passioura, J. B. (1980). The transport of water from soil to shoot in wheat seedlings. Journal of Experimental Botany, 31, 333-345.
Passioura, J. B., & Munns, R. (1984). Hydraulic resistance of plants. II. Effects of rooting medium, and time of day, in barley and Lupin. Functional Plant Biology, 11, 341-350.
Peters, A., Iden, S. C., & Durner, W. (2015). Revisiting the simplified evaporation method: Identification of hydraulic functions considering vapor, film and corner flow. Journal of Hydrology, 527, 531-542.
Rodriguez-Dominguez, C. M., & Brodribb, T. J. (2020). Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytologist, 225, 126-134.
Skelton, R. P., Brodribb, T. J., & Choat, B. (2017). Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. New Phytologist, 214, 561-569.
Sperry, J. S., & Love, D. M. (2015). What plant hydraulics can tell us about responses to climate-change droughts. New Phytologist, 207, 14-27.
Sperry, J. S., Wang, Y., Wolfe, B. T., Mackay, D. S., Anderegg, W. R. L., McDowell, N. G., & Pockman, W. T. (2016). Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytologist, 212, 577-589.
van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892-898.

Auteurs

Mohanned Abdalla (M)

Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.
Department of Horticulture, Faculty of Agriculture, University of Khartoum, Khartoum North, Sudan.

Andrea Carminati (A)

Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.

Gaochao Cai (G)

Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.
Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany.

Mathieu Javaux (M)

Earth and Life Institute-Environmental Science, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium.
Agrosphere (IBG-3), Forschungszentrum Juelich GmbH, Juelich, Germany.

Mutez Ali Ahmed (MA)

Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.
Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria

Classifications MeSH