Coordinate Regulation of Ribosome and tRNA Biogenesis Controls Hypoxic Injury and Translation.


Journal

Current biology : CB
ISSN: 1879-0445
Titre abrégé: Curr Biol
Pays: England
ID NLM: 9107782

Informations de publication

Date de publication:
11 01 2021
Historique:
received: 03 04 2020
revised: 21 08 2020
accepted: 01 10 2020
pubmed: 7 11 2020
medline: 1 9 2021
entrez: 6 11 2020
Statut: ppublish

Résumé

The translation machinery is composed of a myriad of proteins and RNAs whose levels must be coordinated to efficiently produce proteins without wasting energy or substrate. However, protein synthesis is clearly not always perfectly tuned to its environment, as disruption of translation machinery components can lengthen lifespan and stress survival. While much has been learned from bacteria and yeast about translational regulation, much less is known in metazoans. In a screen for mutations protecting C. elegans from hypoxic stress, we isolated multiple genes impacting protein synthesis: a ribosomal RNA helicase gene, tRNA biosynthesis genes, and a gene controlling amino acid availability. To define better the mechanisms by which these genes impact protein synthesis, we performed a second screen for suppressors of the conditional developmental arrest phenotype of the RNA helicase mutant and identified genes involved in ribosome biogenesis. Surprisingly, these suppressor mutations restored normal hypoxic sensitivity and protein synthesis to the tRNA biogenesis mutants, but not to the mutant reducing amino acid uptake. Proteomic analysis demonstrated that reduced tRNA biosynthetic activity produces a selective homeostatic reduction in ribosomal subunits, thereby offering a mechanism for the suppression results. Our study uncovers an unrecognized higher-order-translation regulatory mechanism in a metazoan whereby ribosome biogenesis genes communicate with genes controlling tRNA abundance matching the global rate of protein synthesis with available resources.

Identifiants

pubmed: 33157031
pii: S0960-9822(20)31505-0
doi: 10.1016/j.cub.2020.10.001
pmc: PMC7855744
mid: NIHMS1642830
pii:
doi:

Substances chimiques

Caenorhabditis elegans Proteins 0
RNA, Transfer 9014-25-9
RNA Helicases EC 3.6.4.13

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

128-137.e5

Subventions

Organisme : NINDS NIH HHS
ID : R01 NS109088
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL144778
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK119270
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM086688
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS100350
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM129034
Pays : United States
Organisme : NCI NIH HHS
ID : R37 CA230617
Pays : United States

Commentaires et corrections

Type : CommentIn
Type : ErratumIn

Informations de copyright

Copyright © 2020 Elsevier Inc. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Interests The authors declare no competing interests.

Références

Nucleic Acids Res. 2018 Feb 16;46(3):1457-1469
pubmed: 29244122
Proteomics. 2011 Sep;11(17):3572-7
pubmed: 21751374
Mol Cell Biol. 1997 Jun;17(6):3398-407
pubmed: 9154839
Bioinformatics. 2010 Mar 1;26(5):589-95
pubmed: 20080505
Mol Cell Biol. 2010 Nov;30(21):5033-42
pubmed: 20733002
Cell Rep. 2016 Sep 13;16(11):3041-3051
pubmed: 27626671
EMBO Rep. 2014 Dec;15(12):1278-85
pubmed: 25366321
PLoS One. 2009 Nov 20;4(11):e7937
pubmed: 19936206
Nature. 2012 May 06;486(7401):126-9
pubmed: 22678294
Elife. 2017 Apr 07;6:
pubmed: 28379136
Science. 2009 Jan 30;323(5914):630-3
pubmed: 19179530
WormBook. 2018 Aug 8;2018:1-14
pubmed: 29722207
PLoS Genet. 2015 Oct 22;11(10):e1005580
pubmed: 26492166
Curr Opin Cell Biol. 2017 Apr;45:102-109
pubmed: 28582681
Mol Cell. 2010 Oct 22;40(2):228-37
pubmed: 20965418
Biophys J. 2016 Mar 29;110(6):1264-79
pubmed: 27028637
Nature. 2014 Jan 23;505(7484):564-8
pubmed: 24352239
Genetics. 2009 Feb;181(2):483-96
pubmed: 19047414
Nucleic Acids Res. 2009 Jan;37(Database issue):D93-7
pubmed: 18984615
J Cell Mol Med. 2009 Sep;13(9A):2770-9
pubmed: 19674191
Genetics. 2006 Nov;174(3):1173-87
pubmed: 16980394
Adv Clin Chem. 2010;52:77-108
pubmed: 21275340
Science. 2002 Jun 28;296(5577):2388-91
pubmed: 12065745
BMC Genomics. 2005 Sep 12;6:118
pubmed: 16156901
Genome Biol. 2015 May 06;16:90
pubmed: 25943107
Biochem J. 1998 Jun 1;332 ( Pt 2):565-72
pubmed: 9601088
J Proteome Res. 2014 Aug 1;13(8):3685-92
pubmed: 24999909
Semin Cell Dev Biol. 2014 Dec;36:113-20
pubmed: 25148809
J Neurosci. 2014 Nov 26;34(48):16076-85
pubmed: 25429148
Cell Death Differ. 2014 Apr;21(4):557-67
pubmed: 24317200
Proteomics. 2010 Mar;10(6):1150-9
pubmed: 20101611
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):E3880-9
pubmed: 25187565
PLoS Biol. 2016 Jun 09;14(6):e1002480
pubmed: 27280440
Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613
pubmed: 30476243
J Am Soc Mass Spectrom. 2015 Nov;26(11):1865-74
pubmed: 26115965
Genome Res. 2013 Oct;23(10):1749-62
pubmed: 23800452
Nat Commun. 2014 Dec 05;5:5485
pubmed: 25475837
Am J Physiol Cell Physiol. 2011 Mar;300(3):C385-93
pubmed: 21123733
Nucleic Acids Res. 2014 Mar;42(5):3194-206
pubmed: 24357410
J Biol Chem. 2004 Aug 27;279(35):36739-45
pubmed: 15155758
J Biol Chem. 2012 Mar 16;287(12):9651-8
pubmed: 22308030
J Exp Biol. 2013 Jun 15;216(Pt 12):2283-92
pubmed: 23531825
Aging Cell. 2010 Aug;9(4):636-46
pubmed: 20550516
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
PLoS One. 2011;6(9):e25624
pubmed: 21980510
Cell Rep. 2018 Dec 11;25(11):2946-2954.e5
pubmed: 30540930
Elife. 2017 Jun 26;6:
pubmed: 28650797
Elife. 2019 Jan 15;8:
pubmed: 30642431

Auteurs

Omar A Itani (OA)

Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA.

Xuefei Zhong (X)

Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA.

Xiaoting Tang (X)

Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA.

Barbara A Scott (BA)

Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA.

Jun Yi Yan (JY)

Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA; Department of Anesthesiology, Central Hospital of Changdian, Dandong, Liaoning 118214, China.

Stephane Flibotte (S)

Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall Vancouver, BC V6T 1Z3, Canada.

Yiting Lim (Y)

Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA.

Andrew C Hsieh (AC)

Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA; Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA; Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6420, USA.

James E Bruce (JE)

Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA.

Marc Van Gilst (M)

Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA.

C Michael Crowder (CM)

Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA; Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA. Electronic address: cmc53@uw.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH