Polyoxometalates in Analytical Sciences.
Polyoxometalates
catalytic wave
electrochemistry
modified electrode
spectrophotometry
Journal
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
ISSN: 1348-2246
Titre abrégé: Anal Sci
Pays: Switzerland
ID NLM: 8511078
Informations de publication
Date de publication:
10 Jan 2021
10 Jan 2021
Historique:
pubmed:
10
11
2020
medline:
10
11
2020
entrez:
9
11
2020
Statut:
ppublish
Résumé
Polyoxometalates (POMs) have been used for spectrophotometric determinations of silicon and phosphorus under acidic conditions, referred to as the molybdenum yellow method and molybdenum blue method, respectively. Many POMs are redox active and exhibit fascinating but complicated voltammetric responses. These compounds can reversibly accommodate and release many electrons without exhibiting structural changes, implying that POMs can function as excellent mediators and can be applied to sensitive determination methods based on catalytic electrochemical reactions. In addition, some rare-earth-metal-incorporated POMs exhibit fluorescence, which enables sensitive determination by the enhancement and quenching of fluorescence intensities. In this review, various analytical applications of POMs are introduced, mainly focusing on papers published after 2000, except for the molybdenum yellow method and molybdenum blue method.
Identifiants
pubmed: 33162417
doi: 10.2116/analsci.20SAR17
pii: 10.2116/analsci.20SAR17
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
107-118Références
M. T. Pope, “Heteropoly and Isopoly Oxometalates”, 1983, Springer-Verlag Berlin, Heidelberg.
doi: 10.1007/978-3-662-12004-0
H. Feilchenfeld, in “The Chemistry of Organophosphorus Compounds”, 2006, Vol. 3, John Wiley and Sons, New York, 345-389.
T. Ueda, Anal Sci., 2020, 36, 651.
pubmed: 32522952
doi: 10.2116/analsci.highlights2006
S. Himeno, H. Niiya, and T. Ueda, Bull. Chem. Soc. Jpn., 1997, 70, 631.
doi: 10.1246/bcsj.70.631
J. J. Hastings and O. W. Howarth, J. Chem. Soc., Dalton Trans., 1992, 209.
H. N. Miras, D. L. Long and L. Cronin, in “Advances in Inorganic Chemistry”, ed. R. van Eldik and L. Cronin, 2017, Vol. 69, Academic Press, 1–28.
doi: 10.1016/bs.adioch.2016.12.001
S. Himeno, M. Hashimoto, and T. Ueda, Inorg. Chim. Acta, 1999, 284, 237.
doi: 10.1016/S0020-1693(98)00294-1
H. Katano and T. Ueda, Anal. Sci., 2011, 27, 1043.
pubmed: 21985930
doi: 10.2116/analsci.27.1043
M. Takahashi and M. Tanaka, Bunseki Kagaku, 2012, 61, 1049.
doi: 10.2116/bunsekikagaku.61.1049
W. Xuan, A. J. Surman, H. N. Miras, D. L. Long, and L. Cronin, J. Am. Chem. Soc., 2014, 136, 14114.
pubmed: 25188897
doi: 10.1021/ja5062483
I. Nakamura, H. N. Miras, A. Fujiwara, M. Fujibayashi, Y. F. Song, L. Cronin, and R. Tsunashima, J. Am. Chem. Soc., 2015, 137, 6524.
pubmed: 25897816
doi: 10.1021/ja512758j
M. Takahashi, Y. Abe, and M. Tanaka, Talanta, 2015, 131, 301.
pubmed: 25281106
doi: 10.1016/j.talanta.2014.07.079
C. H. Zhan, R. S. Winter, Q. Zheng, J. Yan, J. M. Cameron, D. L. Long, and L. Cronin, Angew. Chem. Int. Ed., 2015, 54, 14308.
doi: 10.1002/anie.201506170
Q. Zheng, L. Vilà-Nadal, C. Busche, J. S. Mathieson, D. L. Long, and L. Cronin, Angew. Chem. Int. Ed., 2015, 54, 7895.
doi: 10.1002/anie.201502295
J. M. Cameron, L. Vilà-Nadal, R. S. Winter, F. Iijima, J. C. Murillo, A. Rodríguez-Fortea, H. Oshio, J. M. Poblet, and L. Cronin, J. Am. Chem. Soc., 2016, 138, 8765.
pubmed: 27321042
pmcid: 5033398
doi: 10.1021/jacs.6b02245
A. J. Surman, P. J. Robbins, J. Ujma, Q. Zheng, P. E. Barran, and L. Cronin, J. Am. Chem. Soc., 2016, 138, 3824.
pubmed: 26906879
pmcid: 5033399
doi: 10.1021/jacs.6b00070
W. Xuan, R. Pow, N. Watfa, Q. Zheng, A. J. Surman, D. L. Long, and L. Cronin, J. Am. Chem. Soc., 2019, 141, 1242.
pubmed: 30495944
doi: 10.1021/jacs.8b09750
M. Sadakane and E. Steckhan, Chem. Rev. (Washington, DC, U.S.), 1998, 98, 219.
doi: 10.1021/cr960403a
T. Ueda, ChemElectroChem, 2018, 5, 823.
doi: 10.1002/celc.201701170
J. I. Nambu, T. Ueda, S. X. Guo, J. F. Boas, and A. M. Bond, Dalton Trans., 2010, 39, 7364.
pubmed: 20603658
doi: 10.1039/c003248d
T. Ueda, J. I. Nambu, J. Lu, S. X. Guo, Q. Li, J. F. Boas, L. L. Martin, and A. M. Bond, Dalton Trans., 2014, 43, 5462.
pubmed: 24522563
doi: 10.1039/c3dt53161a
T. Ueda, M. Ohnishi, D. Kawamoto, S. X. Guo, J. F. Boas, and A. M. Bond, Dalton Trans., 2015, 44, 11660.
pubmed: 26051962
doi: 10.1039/C5DT01530H
T. Ueda, K. Kodani, H. Ota, M. Shiro, S. X. Guo, J. F. Boas, and A. M. Bond, Inorg. Chem., 2017, 56, 3990.
pubmed: 28290689
doi: 10.1021/acs.inorgchem.6b03046
T. Konishi, K. Kodani, T. Hasegawa, S. Ogo, S. X. Guo, J. F. Boas, J. Zhang, A. M. Bond, and T. Ueda, Inorg. Chem., 2020, 59, 10522.
pubmed: 32786655
doi: 10.1021/acs.inorgchem.0c00876
M. A. Rahman, J. Li, S. X. Guo, G. Kennedy, T. Ueda, A. M. Bond, and J. Zhang, J. Electroanal. Chem., 2020, 872, 113786.
doi: 10.1016/j.jelechem.2019.113786
P. Su, V. Prabhakaran, G. E. Johnson, and J. Laskin, Anal. Chem., 2018, 90, 10935.
pubmed: 30130959
doi: 10.1021/acs.analchem.8b02440
S. Himeno, Y. Nakashima, and K. I. Sano, Anal. Sci., 1998, 14, 369.
doi: 10.2116/analsci.14.369
S. Himeno, I. Kitazumi, M. Takamoto, and Y. Nakashima, Talanta, 2003, 61, 591.
pubmed: 18969222
doi: 10.1016/S0039-9140(03)00366-7
S. Himeno, E. Kitano, and N. Chaen, Electrophoresis, 2007, 28, 1525.
pubmed: 17447242
doi: 10.1002/elps.200600633
S. Himeno, E. Kitano, M. Kanaya, and M. Takamoto, Talanta, 2007, 71, 822.
pubmed: 19071380
doi: 10.1016/j.talanta.2006.05.039
S. Himeno, N. Inazuma, and E. Kitano, J. Sep. Sci., 2007, 30, 1077.
pubmed: 17566343
doi: 10.1002/jssc.200600501
A. Salimi, A. Korani, R. Hallaj, R. Khoshnavazi, and H. Hadadzadeh, Anal. Chim. Acta, 2009, 635, 63.
pubmed: 19200480
doi: 10.1016/j.aca.2009.01.007
X. Wang, H. Zhang, E. Wang, Z. Han, and C. Hu, Mater. Lett., 2004, 58, 1661.
doi: 10.1016/j.matlet.2003.10.044
B. Haghighi, H. Hamidi, and L. Gorton, Electrochim. Acta, 2010, 55, 4750.
doi: 10.1016/j.electacta.2010.03.041
R. Wang, D. Jia, and Y. Cao, Electrochim. Acta, 2012, 72, 101.
doi: 10.1016/j.electacta.2012.04.011
C. Wang, M. Zhou, Y. Ma, H. Tan, Y. Wang, and Y. Li, Chem. Asian J., 2018, 13, 2054.
doi: 10.1002/asia.201800758
M. Zhou, L. P. Guo, F. Y. Lin, and H. X. Liu, Anal. Chim. Acta, 2007, 587, 124.
pubmed: 17386763
doi: 10.1016/j.aca.2007.01.017
S. Guo, L. Xu, B. Xu, Z. Sun, and L. Wang, Analyst, 2015, 140, 820.
pubmed: 25431885
doi: 10.1039/C4AN01734J
A. Tian, M. Yang, H. Ni, N. Sun, Y. Yang, Y. Fu, and J. Ying, Transition. Met. Chem., 2018, 43, 621.
doi: 10.1007/s11243-018-0250-4
J. Xu, S. Xu, S. Feng, Y. Hao, and J. Wang, Electrochim. Acta, 2015, 174, 706.
doi: 10.1016/j.electacta.2015.06.058
L. Kang, H. Ma, Y. Yu, H. Pang, Y. Song, and D. Zhang, Sens. Actuators, B, 2013, 177, 270.
doi: 10.1016/j.snb.2012.10.126
X. Zhang, Y. Bao, Y. Bai, Z. Chen, J. Li, and F. Feng, Electrochim. Acta, 2019, 300, 380.
doi: 10.1016/j.electacta.2019.01.084
P. Wang, X. Wang, L. Bi, and G. Zhu, J. Electroanal. Chem., 2000, 495, 51.
doi: 10.1016/S0022-0728(00)00371-5
H. Ma, Z. Zhang, H. Pang, S. Li, Y. Chen, and W. Zhang, Electrochim. Acta, 2012, 69, 379.
doi: 10.1016/j.electacta.2012.03.017
W. Guo, L. Xu, B. Xu, Y. Yang, Z. Sun, and S. Liu, J. Appl. Electrochem., 2009, 39, 647.
doi: 10.1007/s10800-008-9704-2
L. Liu, L. Tian, H. Xu, and N. Lu, J. Electroanal. Chem., 2006, 587, 213.
doi: 10.1016/j.jelechem.2005.11.010
G. Ma, M. Yang, F. Xu, and L. Wang, Anal. Methods, 2017, 9, 5140.
doi: 10.1039/C7AY01586K
F. Boussema, R. Haddad, Y. Ghandour, M. S. Belkhiria, M. Holzinger, A. Maaref, and S. Cosnier, Electrochim. Acta, 2016, 222, 402.
doi: 10.1016/j.electacta.2016.10.192
J. Zuo, Z. Zhang, J. Jiao, H. Pang, D. Zhang, and H. Ma, Sens. Actuators, B, 2016, 236, 418.
doi: 10.1016/j.snb.2016.05.159
Y. Sahraoui, A. Sbartai, S. Chaliaa, A. Maaref, A. Haddad, and N. Jaffrezic-Renault, Electroanalysis, 2015, 27, 1359.
doi: 10.1002/elan.201400682
H. Ma, S. Shi, Z. Zhang, H. Pang, and Y. Zhang, J. Electroanal. Chem., 2010, 648, 128.
doi: 10.1016/j.jelechem.2010.08.003
J. Yuan, X. Jin, N. Li, J. Chen, J. Miao, Q. Zhang, L. Niu, and J. Song, Electrochim. Acta, 2011, 56, 10069.
doi: 10.1016/j.electacta.2011.08.093
D. Zhang, H. Ma, Y. Chen, H. Pang, and Y. Yu, Anal. Chim. Acta, 2013, 792, 35.
pubmed: 23910965
doi: 10.1016/j.aca.2013.07.010
M. García, K. Carfumán, C. Díaz, C. Garrido, I. Osorio-Román, M. J. Aguirre, and M. Isaacs, Electrochim. Acta, 2012, 80, 390.
doi: 10.1016/j.electacta.2012.07.039
S. A. Trammell, L. C. Shriver-Lake, and W. J. Dressick, Sens. Actuators, B, 2017, 239, 951.
doi: 10.1016/j.snb.2016.08.087
L. C. Shriver-Lake, D. Zabetakis, W. J. Dressick, D. A. Stenger, and S. A. Trammell, Sensors (Switzerland), 2018, 18, 328.
pmcid: 5855869
doi: 10.3390/s18020328
A. Balamurugan and S.-M. Chen, Electroanalysis, 2007, 19, 1616.
doi: 10.1002/elan.200703892
Z. Li, J. Chen, D. Pan, W. Tao, L. Nie, and S. Yao, Electrochim. Acta, 2006, 51, 4255.
doi: 10.1016/j.electacta.2005.12.004
A. Z. Ernst, L. Sun, K. Wiaderek, A. Kolary, S. Zoladek, P. J. Kulesza, and J. A. Cox, Electroanalysis, 2007, 19, 2103.
doi: 10.1002/elan.200703925
X. Zhang, W. Wu, J. Wang, C. Liu, and S. Qian, J. Mater. Res., 2008, 23, 18.
doi: 10.1557/JMR.2008.0028
T. Dong, J. Du, M. Cao, and C. Hu, J. Cluster Sci., 2010, 21, 155.
doi: 10.1007/s10876-010-0302-1
S. S. Hassan, Y. Liu, Sirajuddin, A. R. Solangi, A. M. Bond, and J. Zhang, Anal. Chim. Acta, 2013, 803, 41.
pubmed: 24216195
doi: 10.1016/j.aca.2013.04.036
M. Skunik and P. J. Kulesza, Anal. Chim. Acta, 2009, 631, 153.
pubmed: 19084620
doi: 10.1016/j.aca.2008.10.031
H. Y. Zhang, A. J. Miao, and M. Jiang, Mater. Chem. Phys., 2013, 141, 482.
doi: 10.1016/j.matchemphys.2013.05.047
G. G. Papagianni, D. V. Stergiou, G. S. Armatas, M. G. Kanatzidis, and M. I. Prodromidis, Sens. Actuators, B, 2012, 173, 346.
doi: 10.1016/j.snb.2012.07.020
J. Liu, L. Cheng, and S. Dong, Electroanalysis, 2002, 14, 569.
doi: 10.1002/1521-4109(200205)14:9<569::AID-ELAN569>3.0.CO;2-X
L. Bi, Y. Shen, J. Jiang, E. Wang, and S. Dong, Anal. Chim. Acta, 2005, 534, 343.
doi: 10.1016/j.aca.2004.11.040
Y. Li, W. Bu, L. Wu, and C. Sun, Sens. Actuators, B, 2005, 107, 921.
doi: 10.1016/j.snb.2004.12.040
D. M. Fernandes, A. Teixeira, and C. Freire, Langmuir, 2015, 31, 1855.
pubmed: 25603457
doi: 10.1021/la5043266
X. Wang, Y. Zhao, Z. Di, L. Zhang, Z. Bai, H. Pang, and H. Ma, Int. J. Electrochem. Sci., 2018, 13, 8454.
doi: 10.20964/2018.09.72
L. H. Bi, T. McCormac, S. Beloshapkin, and E. Dempsey, Electroanalysis, 2008, 20, 38.
doi: 10.1002/elan.200704021
W. Guo, X. Tong, and S. Liu, Electrochim. Acta, 2015, 173, 540.
doi: 10.1016/j.electacta.2015.05.097
Z. Ma, Y. Qiu, H. Yang, Y. Huang, J. Liu, Y. Lu, C. Zhang, and P. Hu, ACS Appl. Mater. Int., 2015, 7, 22036.
doi: 10.1021/acsami.5b07046
X. Li, L. Sun, X. Yang, K. Zhou, G. Zhang, Z. Tong, C. Wang, and J. Sha, Analyst, 2019, 144, 3347.
pubmed: 30976770
doi: 10.1039/C9AN00163H
B. Mbage, Y. Li, H. Si, X. Zhang, Y. Li, X. Wang, A. Salah, and K. Zhang, Sens. Actuators, B, 2020, 304, 127429.
doi: 10.1016/j.snb.2019.127429
R. Tian, B. Zhang, M. Zhao, H. Zou, C. Zhang, Y. Qi, and Q. Ma, RSC Adv., 2019, 9, 12209.
pubmed: 35515876
pmcid: 9063527
doi: 10.1039/C9RA00505F
L. Monser, S. Sadok, G. M. Greenway, I. Shah, and R. F. Uglow, Talanta, 2002, 57, 511.
pubmed: 18968650
doi: 10.1016/S0039-9140(02)00057-7
B. Fang, D. Chen, Q. Huang, Y. Wei, and G. Wang, Electroanalysis, 2008, 20, 1234.
doi: 10.1002/elan.200704171
H. Ji, L. Zhu, D. Liang, Y. Liu, L. Cai, S. Zhang, and S. Liu, Electrochim. Acta, 2009, 54, 7429.
doi: 10.1016/j.electacta.2009.07.076
S. Kakhki and E. Shams, J. Electroanal. Chem., 2013, 704, 249.
doi: 10.1016/j.jelechem.2013.01.017
S. Kakhki, E. Shams, and M. M. Barsan, Electroanalysis, 2013, 25, 2100.
doi: 10.1002/elan.201300235
Ö. A. Yokus, F. Kardas, O. Akyildirim, T. Eren, N. Atar, and M. L. Yola, Sens. Actuators, B, 2016, 233, 47.
doi: 10.1016/j.snb.2016.04.050
A. A. Ensafi, M. Gorgabi-Khorzoughi, B. Rezaei, and M. Jafari-Asl, J. Taiwan Inst. Chem. Eng., 2017, 78, 56.
doi: 10.1016/j.jtice.2017.06.001
A. Petrova, A. Bulatov, A. Vishnikin, L. Moskvin, R. Ishimatsu, K. Nakano, and T. Imato, Anal. Sci., 2015, 31, 529.
pubmed: 26063015
doi: 10.2116/analsci.31.529
J. A. Cox, S. D. Holmstrom, and M. E. Tess, Talanta, 2000, 52, 1081.
pubmed: 18968070
doi: 10.1016/S0039-9140(00)00477-X
G. L. Turdean, A. Curulli, I. C. Popescu, C. Rosu, and G. Palleschi, Electroanalysis, 2002, 14, 1550.
doi: 10.1002/1521-4109(200211)14:22<1550::AID-ELAN1550>3.0.CO;2-6
F. Boussema, A. J. Gross, F. Hmida, B. Ayed, H. Majdoub, S. Cosnier, A. Maaref, and M. Holzinger, Biosens. Bioelectron., 2018, 109, 20.
pubmed: 29524913
doi: 10.1016/j.bios.2018.02.060
S. Liu, J. Tian, L. Wang, Y. Zhang, Y. Luo, H. Li, A. M. Asiri, A. O. Al-Youbi, and X. Sun, ChemPlusChem, 2012, 77, 541.
doi: 10.1002/cplu.201200051
Y. He, X. Li, X. Xu, J. Pan, and X. Niu, J. Mater. Chem. B, 2018, 6, 5750.
pubmed: 32254981
doi: 10.1039/C8TB01853G
A. Saeed, M. Umer, N. Yamasaki, S. Azuma, T. Ueda, and M. J. A. Shiddiky, ChemElectroChem, 2020, 7, 3943.
doi: 10.1002/celc.202000544
Y. Jia, S. Sun, X. Cui, X. Wang, and L. Yang, Talanta, 2019, 205, 120139.
pubmed: 31450453
doi: 10.1016/j.talanta.2019.120139
M. Yang, D. S. Kim, T. J. Lee, S. J. Lee, K. G. Lee, and B. G. Choi, J. Colloid Interface Sci., 2016, 468, 51.
pubmed: 26828273
doi: 10.1016/j.jcis.2016.01.047
H. Katano, S. Taira, K. Uematsu, and H. Kimoto, Anal. Sci., 2013, 29, 1021.
pubmed: 24212726
doi: 10.2116/analsci.29.1021
H. Katano, M. Takakuwa, T. Itoh, and T. Hibi, Anal. Sci., 2015, 31, 1291.
pubmed: 26656820
doi: 10.2116/analsci.31.1291
H. Katano, M. Takakuwa, H. Hayakawa, and H. Kimoto, Anal. Sci., 2016, 32, 701.
pubmed: 27302593
doi: 10.2116/analsci.32.701
H. Zhang, A. Xie, Y. Shen, L. Qiu, and X. Tian, Phys. Chem. Chem. Phys., 2012, 14, 12757.
pubmed: 22890151
doi: 10.1039/c2cp41561e
S. Li, H. Ma, K. P. O’Halloran, H. Pang, H. Ji, and C. Zhou, Electrochim. Acta, 2013, 108, 717.
doi: 10.1016/j.electacta.2013.07.033
C. Zhou, S. Li, W. Zhu, H. Pang, and H. Ma, Electrochim. Acta, 2013, 113, 454.
doi: 10.1016/j.electacta.2013.09.109
W. Zhu, W. Zhang, S. Li, H. Ma, W. Chen, and H. Pang, Sens. Actuators, B, 2013, 181, 773.
doi: 10.1016/j.snb.2013.01.050
D. M. Fernandes and C. Freire, ChemElectroChem, 2015, 2, 269.
doi: 10.1002/celc.201402271
L. Zhang, L. Ning, S. Li, H. Pang, Z. Zhang, H. Ma, and H. Yan, RSC Adv., 2016, 6, 66468.
doi: 10.1039/C6RA09819C
W. Zhang, G. Jia, Z. Li, C. Yuan, Y. Bai, and D. Fu, Adv. Mater. Interfaces, 2017, 4, 1601241.
doi: 10.1002/admi.201601241
J. Jiao, J. Zuo, H. Pang, L. Tan, T. Chen, and H. Ma, J. Electroanal. Chem., 2018, 827, 103.
doi: 10.1016/j.jelechem.2018.09.014
X. Wang, Y. Zhao, D. Zhang, S. Rong, and H. Ma, Int. J. Electrochem. Sci., 2019, 14, 3595.
doi: 10.20964/2019.04.08
P. Li, S. Ye, S. Chen, J. Xiong, L. Wang, and Y. Song, Asian J. Chem., 2013, 25, 1420.
W. Zhang, D. Du, D. Gunaratne, R. Colby, Y. Lin, and J. Laskin, Electroanalysis, 2014, 26, 178.
doi: 10.1002/elan.201300343
D. Zhu, W. Zhu, J. Xin, L. Tan, X. Wang, H. Pang, and H. Ma, New J. Chem., 2019, 43, 9420.
doi: 10.1039/C9NJ01429B
D. M. Fernandes, M. Nunes, B. Bachiller-Baeza, I. Rodríguez-Ramos, A. Guerrero-Ruiz, C. Delerue-Matos, and C. Freire, J. Solid State Electrochem., 2017, 21, 1059.
doi: 10.1007/s10008-016-3463-5
X. Kong, Y. Wang, Q. Zhang, T. Zhang, Q. Teng, L. Wang, H. Wang, and Y. Zhang, J. Colloid Interface Sci., 2017, 505, 615.
pubmed: 28651201
doi: 10.1016/j.jcis.2017.06.068
L. Wang, T. Meng, J. Sun, S. Wu, M. Zhang, H. Wang, and Y. Zhang, Anal. Chim. Acta, 2019, 1047, 28.
pubmed: 30567661
doi: 10.1016/j.aca.2018.09.042
A. H. Oghli and A. Soleymanpour, Mater. Sci. Eng. C, 2020, 108, 110407.
doi: 10.1016/j.msec.2019.110407
A. B. Vishnikin, M. K. E. A. Al-Shwaiyat, G. A. Petrushina, L. P. Tsiganok, V. Andruch, Y. R. Bazel, H. Sklenárová, and P. Solich, Talanta, 2012, 96, 230.
pubmed: 22817955
doi: 10.1016/j.talanta.2012.02.049
J. Cai, G. T. Zhu, X. M. He, Z. Zhang, R. Q. Wang, and Y. Q. Feng, Talanta, 2017, 170, 252.
pubmed: 28501167
doi: 10.1016/j.talanta.2017.04.020
M. L. Yola, N. Atar, T. Eren, H. Karimi-Maleh, and S. Wang, RSC Adv., 2015, 5, 65953.
doi: 10.1039/C5RA07443F
B. Ertan, T. Eren, I. Ermis, H. Saral, N. Atar, and M. L. Yola, J. Colloid Interface Sci., 2016, 470, 14.
pubmed: 26928060
doi: 10.1016/j.jcis.2016.02.036
M. L. Yola, C. Göde, and N. Atar, Electrochim. Acta, 2017, 246, 135.
doi: 10.1016/j.electacta.2017.06.053
Z. Zhang, Y. Li, X. Liu, Y. Zhang, and D. Wang, Int. J. Electrochem. Sci., 2018, 13, 2986.
doi: 10.20964/2018.03.67
N. Thakur, M. Kumar, S. Das Adhikary, D. Mandal, and T. C. Nagaiah, Chem. Commun., 2019, 55, 5021.
doi: 10.1039/C9CC01534E
D. Zhu, D. Guo, L. Zhang, L. Tan, H. Pang, H. Ma, and M. Zhai, Sens. Actuators, B, 2019, 281, 893.
doi: 10.1016/j.snb.2018.10.151
J. Ding and T. Osakai, Electroanalysis, 2001, 13, 384.
doi: 10.1002/1521-4109(200104)13:5<384::AID-ELAN384>3.0.CO;2-R
H. M. Merken and G. R. Beecher, J. Agric. Food Chem., 2000, 48, 577.
pubmed: 10725120
doi: 10.1021/jf990872o
P. Fletcher, K. N. Andrew, A. C. Calokerinos, S. Forbes, and P. J. Worsfold, Luminescence, 2001, 16, 1.
pubmed: 11180653
doi: 10.1002/bio.607
L. Pillonel, S. Ampuero, R. Tabacchi, and J. Bosset, Eur. Food Res. Technol., 2003, 216, 179.
doi: 10.1007/s00217-002-0629-4
R. Karoui and J. De Baerdemaeker, Food Chem., 2007, 102, 621.
doi: 10.1016/j.foodchem.2006.05.042
F. Hernández and M. Ibáñez, in “Liquid Chromatography: Applications”, 2013, Elsevier, Amsterdam, Netherlands, 319–336.
doi: 10.1016/B978-0-12-415806-1.00012-7
I. C. F. R. Ferreira and M. Carocho, in “Encyclopedia of Analytical Science”, 2019, Elsevier, 419–427.
M. Hernández-Mesa, D. Moreno-González, F. J. Lara and A. M. García-Campaña, in “Encyclopedia of Analytical Science”, 2019, Elsevier, 358–366.
H. Xu, Z. Bai, G. Wang, K. P. O’Halloran, L. Tan, H. Pang, and H. Ma, Microchim. Acta, 2017, 184, 4295.
doi: 10.1007/s00604-017-2447-1
A. Babakhanian, S. Kaki, M. Ahmadi, H. Ehzari, and A. Pashabadi, Biosens. Bioelectron., 2014, 60, 185.
pubmed: 24800683
doi: 10.1016/j.bios.2014.03.058
T. Zhang, M. Liu, Q. Zhang, Y. Wang, X. Kong, L. Wang, H. Wang, and Y. Zhang, Analyst, 2017, 142, 2603.
pubmed: 28603802
doi: 10.1039/C7AN00493A
R. Xing, L. Tong, X. Zhao, H. Liu, P. Ma, J. Zhao, X. Liu, and S. Liu, Sens. Actuators, B, 2019, 283, 35.
doi: 10.1016/j.snb.2018.11.129
M. I. S. Verissimo, J. A. F. Gamelas, M. M. Q. Sirnòes, D. V. Evtuguin, and M. T. S. R. Gomes, Sens. Actuators, B, 2018, 255, 2608.
doi: 10.1016/j.snb.2017.09.068
M. I. S. Verissimo, J. A. F. Gamelas, D. V. Evtuguin, and M. T. S. R. Gomes, Food Chem., 2017, 220, 420.
pubmed: 27855921
doi: 10.1016/j.foodchem.2016.09.204
T. Zhang, L. Qin, S. Z. Kang, G. Li, and X. Li, Sens. Actuators, B, 2017, 242, 1129.
doi: 10.1016/j.snb.2016.09.134
N. Atar, M. L. Yola, and T. Eren, Appl. Surf. Sci., 2016, 362, 315.
doi: 10.1016/j.apsusc.2015.11.222
R. Amorati and L. Valgimigli, Free Radical Res., 2015, 49, 633.
doi: 10.3109/10715762.2014.996146
K. Masisi, T. Beta, and M. H. Moghadasian, Food Chem., 2016, 796, 90.
doi: 10.1016/j.foodchem.2015.09.021
M. P. Cañizares, M. T. Tena, and M. D. Luque De Castro, Anal. Chim. Acta, 1996, 323, 55.
doi: 10.1016/0003-2670(95)00613-3
M. Abderrahim, S. M. Arribas, and L. Condezo-Hoyos, Talanta, 2016, 152, 82.
pubmed: 26992497
doi: 10.1016/j.talanta.2016.01.051
A. S. Ahmad, N. Rahman, and F. Islam, J. Anal. Chem., 2004, 59, 119.
doi: 10.1023/B:JANC.0000014736.59554.5c
T. Ueda, T. Okumura, Y. Tanaka, S. Akase, T. Shimamura, and H. Ukeda, Anal. Sci., 2016, 32, 825.
pubmed: 27506707
doi: 10.2116/analsci.32.825
Y. Tanaka, T. Hasegawa, T. Shimamura, H. Ukeda, and T. Ueda, J. Electroanal. Chem., 2018, 828, 102.
doi: 10.1016/j.jelechem.2018.09.024
H. Shi, N. Li, Z. Sun, T. Wang, and L. Xu, J. Phys. Chem. Solids, 2018, 120, 57.
doi: 10.1016/j.jpcs.2018.04.014
P. Wang, X. Zou, H. Tan, S. Wu, L. Jiang, and G. Zhu, J. Mater. Chem. C, 2018, 6, 5412.
doi: 10.1039/C8TC00987B
A. L. Kukla, A. S. Pavluchenko, Y. M. Shirshov, N. V. Konoshchuk, and O. Y. Posudievsky, Sens. Actuators, B, 2009, 135, 541.
doi: 10.1016/j.snb.2008.09.027
T. Wang, Z. Sun, Y. Wang, R. Liu, M. Sun, and L. Xu, Sens. Actuators, B, 2017, 246, 769.
doi: 10.1016/j.snb.2017.02.108
S. A. Krutovertsev, O. M. Ivanova, and S. I. Sorokin, J. Anal. Chem., 2001, 56, 1057.
doi: 10.1023/A:1012569127685
Y. Gao, S. Yao, J. Gong, and L. Qu, Macromol. Rapid Commun., 2007, 28, 286.
doi: 10.1002/marc.200600672
Y. Shen, J. Peng, H. Zhang, C. Meng, and F. Zhang, J. Solid State Chem., 2012, 185, 225.
doi: 10.1016/j.jssc.2011.10.048
B. Xu, L. Xu, G. Gao, Z. Li, Y. Liu, W. Guo, and L. Jia, New J. Chem., 2008, 32, 1008.
doi: 10.1039/b801764f
M. I. Khan, N. R. Putrevu, S. Ayesh, E. H. Yohannes, B. Cage, and R. J. Doedens, Cryst. Growth Des., 2013, 13, 4667.
doi: 10.1021/cg4007444
Q. Zhang, T. Wang, Z. Sun, L. Xi, and L. Xu, Sens. Actuators, B, 2018, 272, 289.
doi: 10.1016/j.snb.2018.05.169
I. Treglazov, L. Leonova, Y. Dobrovolsky, A. Ryabov, A. Vakulenko, and S. Vassiliev, Sens. Actuators, B, 2005, 106, 164.
doi: 10.1016/j.snb.2004.05.053
Y. Gong, Q. Hu, C. Wang, L. Zang, and L. Yu, Langmuir, 2016, 32, 421.
pubmed: 26704346
doi: 10.1021/acs.langmuir.5b03883
Y. Guo, Y. Gong, Y. Gao, J. Xiao, T. Wang, and L. Yu, Langmuir, 2016, 32, 9293.
pubmed: 27548373
doi: 10.1021/acs.langmuir.6b02539
P. Sun, S. Zhang, Z. Xiang, T. Zhao, D. Sun, G. Zhang, M. Chen, K. Guo, and X. Xin, J. Colloid Interface Sci., 2019, 547, 60.
pubmed: 30939345
doi: 10.1016/j.jcis.2019.03.085
H. Zhang, L. Guo, Z. Xie, X. Xin, D. Sun, and S. Yuan, Langmuir, 2016, 32, 13736.
pubmed: 27973851
doi: 10.1021/acs.langmuir.6b03709
A. Wu, P. Sun, N. Sun, Y. Yu, and L. Zheng, Chem.—Eur. J., 2018, 24, 16857.
pubmed: 30171633
doi: 10.1002/chem.201803800
J. Yang, M. Chen, P. Li, F. Cheng, Y. Xu, Z. Li, Y. Wang, and H. Li, Sens. Actuators, B, 2018, 273, 153.
doi: 10.1016/j.snb.2018.06.024
Y. Guo, Y. Gong, L. Qi, Y. Gao, and L. Yu, J. Colloid Interface Sci., 2017, 485, 280.
pubmed: 27684785
doi: 10.1016/j.jcis.2016.09.047
H. Liu, Y. Lv, S. Li, F. Yang, S. Liu, C. Wang, J. Q. Sun, H. Meng, and G. G. Gao, J. Mater. Chem. C, 2017, 5, 9383.
doi: 10.1039/C7TC01263B
Z. Fu, W. Gao, T. Yu, and L. Bi, Talanta, 2019, 195, 463.
pubmed: 30625571
doi: 10.1016/j.talanta.2018.11.091
H. Wu, H. Chen, M. Fu, R. Li, P. Ma, J. Wang, and J. Niu, Dyes Pigm., 2019, 171, 107696.
doi: 10.1016/j.dyepig.2019.107696
T. Dutta and S. Sarkar, Appl. Nanosci., 2016, 6, 1191.
doi: 10.1007/s13204-016-0529-8
Y. Li, H. Zhu, and X. Yang, Talanta, 2009, 80, 870.
pubmed: 19836566
doi: 10.1016/j.talanta.2009.08.008
J. Qian, K. Wang, Y. Jin, X. Yang, L. Jiang, Y. Yan, X. Dong, H. Li, and B. Qiu, Biosens. Bioelectron., 2014, 57, 149.
pubmed: 24583685
doi: 10.1016/j.bios.2014.02.005
M. Ammam, B. Keita, L. Nadjo, and J. Fransaer, Sens. Actuators, B, 2009, 142, 347.
doi: 10.1016/j.snb.2009.08.036
R. Yavari, S. J. Ahmadi, Y. D. Huang, A. R. Khanchi, G. Bagheri, and J. M. He, Talanta, 2009, 77, 1179.
pubmed: 19064109
doi: 10.1016/j.talanta.2008.08.026
M. Ammam, B. Keita, L. Nadjo, I. M. Mbomekalle, and J. Fransaer, J. Electroanal. Chem., 2010, 645, 65.
doi: 10.1016/j.jelechem.2010.03.026
M. Jiang, E. Wang, L. Xu, Z. Kang, and S. Lian, J. Solid State Chem., 2004, 177, 1776.
doi: 10.1016/j.jssc.2003.12.039
S. Herrmann, J. T. Margraf, T. Clark, and C. Streb, Chem. Commun., 2015, 57, 13702.
doi: 10.1039/C5CC05730B
T. Ueda, K. Yamashita, and A. Onda, Appl. Catal. A, 2014, 485, 181.
doi: 10.1016/j.apcata.2014.07.032
S. Azuma, T. Kadoguchi, Y. Eguchi, H. Hirabaru, H. Ota, M. Sadakane, K. Yanagisawa, T. Hasegawa, and T. Ueda, Dalton Trans., 2020, 49, 2766.
pubmed: 32065176
doi: 10.1039/C9DT04737A
H. Hirabaru, D. Kawamoto, M. Ohnishi, H. Ota, M. Sadakane, K. Yanagisawa, T. Hasegawa, and T. Ueda, Eur. J. Inorg. Chem., 2020, 666.