Polyoxometalates in Analytical Sciences.

Polyoxometalates catalytic wave electrochemistry modified electrode spectrophotometry

Journal

Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
ISSN: 1348-2246
Titre abrégé: Anal Sci
Pays: Switzerland
ID NLM: 8511078

Informations de publication

Date de publication:
10 Jan 2021
Historique:
pubmed: 10 11 2020
medline: 10 11 2020
entrez: 9 11 2020
Statut: ppublish

Résumé

Polyoxometalates (POMs) have been used for spectrophotometric determinations of silicon and phosphorus under acidic conditions, referred to as the molybdenum yellow method and molybdenum blue method, respectively. Many POMs are redox active and exhibit fascinating but complicated voltammetric responses. These compounds can reversibly accommodate and release many electrons without exhibiting structural changes, implying that POMs can function as excellent mediators and can be applied to sensitive determination methods based on catalytic electrochemical reactions. In addition, some rare-earth-metal-incorporated POMs exhibit fluorescence, which enables sensitive determination by the enhancement and quenching of fluorescence intensities. In this review, various analytical applications of POMs are introduced, mainly focusing on papers published after 2000, except for the molybdenum yellow method and molybdenum blue method.

Identifiants

pubmed: 33162417
doi: 10.2116/analsci.20SAR17
pii: 10.2116/analsci.20SAR17
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

107-118

Références

M. T. Pope, “Heteropoly and Isopoly Oxometalates”, 1983, Springer-Verlag Berlin, Heidelberg.
doi: 10.1007/978-3-662-12004-0
H. Feilchenfeld, in “The Chemistry of Organophosphorus Compounds”, 2006, Vol. 3, John Wiley and Sons, New York, 345-389.
T. Ueda, Anal Sci., 2020, 36, 651.
pubmed: 32522952 doi: 10.2116/analsci.highlights2006
S. Himeno, H. Niiya, and T. Ueda, Bull. Chem. Soc. Jpn., 1997, 70, 631.
doi: 10.1246/bcsj.70.631
J. J. Hastings and O. W. Howarth, J. Chem. Soc., Dalton Trans., 1992, 209.
H. N. Miras, D. L. Long and L. Cronin, in “Advances in Inorganic Chemistry”, ed. R. van Eldik and L. Cronin, 2017, Vol. 69, Academic Press, 1–28.
doi: 10.1016/bs.adioch.2016.12.001
S. Himeno, M. Hashimoto, and T. Ueda, Inorg. Chim. Acta, 1999, 284, 237.
doi: 10.1016/S0020-1693(98)00294-1
H. Katano and T. Ueda, Anal. Sci., 2011, 27, 1043.
pubmed: 21985930 doi: 10.2116/analsci.27.1043
M. Takahashi and M. Tanaka, Bunseki Kagaku, 2012, 61, 1049.
doi: 10.2116/bunsekikagaku.61.1049
W. Xuan, A. J. Surman, H. N. Miras, D. L. Long, and L. Cronin, J. Am. Chem. Soc., 2014, 136, 14114.
pubmed: 25188897 doi: 10.1021/ja5062483
I. Nakamura, H. N. Miras, A. Fujiwara, M. Fujibayashi, Y. F. Song, L. Cronin, and R. Tsunashima, J. Am. Chem. Soc., 2015, 137, 6524.
pubmed: 25897816 doi: 10.1021/ja512758j
M. Takahashi, Y. Abe, and M. Tanaka, Talanta, 2015, 131, 301.
pubmed: 25281106 doi: 10.1016/j.talanta.2014.07.079
C. H. Zhan, R. S. Winter, Q. Zheng, J. Yan, J. M. Cameron, D. L. Long, and L. Cronin, Angew. Chem. Int. Ed., 2015, 54, 14308.
doi: 10.1002/anie.201506170
Q. Zheng, L. Vilà-Nadal, C. Busche, J. S. Mathieson, D. L. Long, and L. Cronin, Angew. Chem. Int. Ed., 2015, 54, 7895.
doi: 10.1002/anie.201502295
J. M. Cameron, L. Vilà-Nadal, R. S. Winter, F. Iijima, J. C. Murillo, A. Rodríguez-Fortea, H. Oshio, J. M. Poblet, and L. Cronin, J. Am. Chem. Soc., 2016, 138, 8765.
pubmed: 27321042 pmcid: 5033398 doi: 10.1021/jacs.6b02245
A. J. Surman, P. J. Robbins, J. Ujma, Q. Zheng, P. E. Barran, and L. Cronin, J. Am. Chem. Soc., 2016, 138, 3824.
pubmed: 26906879 pmcid: 5033399 doi: 10.1021/jacs.6b00070
W. Xuan, R. Pow, N. Watfa, Q. Zheng, A. J. Surman, D. L. Long, and L. Cronin, J. Am. Chem. Soc., 2019, 141, 1242.
pubmed: 30495944 doi: 10.1021/jacs.8b09750
M. Sadakane and E. Steckhan, Chem. Rev. (Washington, DC, U.S.), 1998, 98, 219.
doi: 10.1021/cr960403a
T. Ueda, ChemElectroChem, 2018, 5, 823.
doi: 10.1002/celc.201701170
J. I. Nambu, T. Ueda, S. X. Guo, J. F. Boas, and A. M. Bond, Dalton Trans., 2010, 39, 7364.
pubmed: 20603658 doi: 10.1039/c003248d
T. Ueda, J. I. Nambu, J. Lu, S. X. Guo, Q. Li, J. F. Boas, L. L. Martin, and A. M. Bond, Dalton Trans., 2014, 43, 5462.
pubmed: 24522563 doi: 10.1039/c3dt53161a
T. Ueda, M. Ohnishi, D. Kawamoto, S. X. Guo, J. F. Boas, and A. M. Bond, Dalton Trans., 2015, 44, 11660.
pubmed: 26051962 doi: 10.1039/C5DT01530H
T. Ueda, K. Kodani, H. Ota, M. Shiro, S. X. Guo, J. F. Boas, and A. M. Bond, Inorg. Chem., 2017, 56, 3990.
pubmed: 28290689 doi: 10.1021/acs.inorgchem.6b03046
T. Konishi, K. Kodani, T. Hasegawa, S. Ogo, S. X. Guo, J. F. Boas, J. Zhang, A. M. Bond, and T. Ueda, Inorg. Chem., 2020, 59, 10522.
pubmed: 32786655 doi: 10.1021/acs.inorgchem.0c00876
M. A. Rahman, J. Li, S. X. Guo, G. Kennedy, T. Ueda, A. M. Bond, and J. Zhang, J. Electroanal. Chem., 2020, 872, 113786.
doi: 10.1016/j.jelechem.2019.113786
P. Su, V. Prabhakaran, G. E. Johnson, and J. Laskin, Anal. Chem., 2018, 90, 10935.
pubmed: 30130959 doi: 10.1021/acs.analchem.8b02440
S. Himeno, Y. Nakashima, and K. I. Sano, Anal. Sci., 1998, 14, 369.
doi: 10.2116/analsci.14.369
S. Himeno, I. Kitazumi, M. Takamoto, and Y. Nakashima, Talanta, 2003, 61, 591.
pubmed: 18969222 doi: 10.1016/S0039-9140(03)00366-7
S. Himeno, E. Kitano, and N. Chaen, Electrophoresis, 2007, 28, 1525.
pubmed: 17447242 doi: 10.1002/elps.200600633
S. Himeno, E. Kitano, M. Kanaya, and M. Takamoto, Talanta, 2007, 71, 822.
pubmed: 19071380 doi: 10.1016/j.talanta.2006.05.039
S. Himeno, N. Inazuma, and E. Kitano, J. Sep. Sci., 2007, 30, 1077.
pubmed: 17566343 doi: 10.1002/jssc.200600501
A. Salimi, A. Korani, R. Hallaj, R. Khoshnavazi, and H. Hadadzadeh, Anal. Chim. Acta, 2009, 635, 63.
pubmed: 19200480 doi: 10.1016/j.aca.2009.01.007
X. Wang, H. Zhang, E. Wang, Z. Han, and C. Hu, Mater. Lett., 2004, 58, 1661.
doi: 10.1016/j.matlet.2003.10.044
B. Haghighi, H. Hamidi, and L. Gorton, Electrochim. Acta, 2010, 55, 4750.
doi: 10.1016/j.electacta.2010.03.041
R. Wang, D. Jia, and Y. Cao, Electrochim. Acta, 2012, 72, 101.
doi: 10.1016/j.electacta.2012.04.011
C. Wang, M. Zhou, Y. Ma, H. Tan, Y. Wang, and Y. Li, Chem. Asian J., 2018, 13, 2054.
doi: 10.1002/asia.201800758
M. Zhou, L. P. Guo, F. Y. Lin, and H. X. Liu, Anal. Chim. Acta, 2007, 587, 124.
pubmed: 17386763 doi: 10.1016/j.aca.2007.01.017
S. Guo, L. Xu, B. Xu, Z. Sun, and L. Wang, Analyst, 2015, 140, 820.
pubmed: 25431885 doi: 10.1039/C4AN01734J
A. Tian, M. Yang, H. Ni, N. Sun, Y. Yang, Y. Fu, and J. Ying, Transition. Met. Chem., 2018, 43, 621.
doi: 10.1007/s11243-018-0250-4
J. Xu, S. Xu, S. Feng, Y. Hao, and J. Wang, Electrochim. Acta, 2015, 174, 706.
doi: 10.1016/j.electacta.2015.06.058
L. Kang, H. Ma, Y. Yu, H. Pang, Y. Song, and D. Zhang, Sens. Actuators, B, 2013, 177, 270.
doi: 10.1016/j.snb.2012.10.126
X. Zhang, Y. Bao, Y. Bai, Z. Chen, J. Li, and F. Feng, Electrochim. Acta, 2019, 300, 380.
doi: 10.1016/j.electacta.2019.01.084
P. Wang, X. Wang, L. Bi, and G. Zhu, J. Electroanal. Chem., 2000, 495, 51.
doi: 10.1016/S0022-0728(00)00371-5
H. Ma, Z. Zhang, H. Pang, S. Li, Y. Chen, and W. Zhang, Electrochim. Acta, 2012, 69, 379.
doi: 10.1016/j.electacta.2012.03.017
W. Guo, L. Xu, B. Xu, Y. Yang, Z. Sun, and S. Liu, J. Appl. Electrochem., 2009, 39, 647.
doi: 10.1007/s10800-008-9704-2
L. Liu, L. Tian, H. Xu, and N. Lu, J. Electroanal. Chem., 2006, 587, 213.
doi: 10.1016/j.jelechem.2005.11.010
G. Ma, M. Yang, F. Xu, and L. Wang, Anal. Methods, 2017, 9, 5140.
doi: 10.1039/C7AY01586K
F. Boussema, R. Haddad, Y. Ghandour, M. S. Belkhiria, M. Holzinger, A. Maaref, and S. Cosnier, Electrochim. Acta, 2016, 222, 402.
doi: 10.1016/j.electacta.2016.10.192
J. Zuo, Z. Zhang, J. Jiao, H. Pang, D. Zhang, and H. Ma, Sens. Actuators, B, 2016, 236, 418.
doi: 10.1016/j.snb.2016.05.159
Y. Sahraoui, A. Sbartai, S. Chaliaa, A. Maaref, A. Haddad, and N. Jaffrezic-Renault, Electroanalysis, 2015, 27, 1359.
doi: 10.1002/elan.201400682
H. Ma, S. Shi, Z. Zhang, H. Pang, and Y. Zhang, J. Electroanal. Chem., 2010, 648, 128.
doi: 10.1016/j.jelechem.2010.08.003
J. Yuan, X. Jin, N. Li, J. Chen, J. Miao, Q. Zhang, L. Niu, and J. Song, Electrochim. Acta, 2011, 56, 10069.
doi: 10.1016/j.electacta.2011.08.093
D. Zhang, H. Ma, Y. Chen, H. Pang, and Y. Yu, Anal. Chim. Acta, 2013, 792, 35.
pubmed: 23910965 doi: 10.1016/j.aca.2013.07.010
M. García, K. Carfumán, C. Díaz, C. Garrido, I. Osorio-Román, M. J. Aguirre, and M. Isaacs, Electrochim. Acta, 2012, 80, 390.
doi: 10.1016/j.electacta.2012.07.039
S. A. Trammell, L. C. Shriver-Lake, and W. J. Dressick, Sens. Actuators, B, 2017, 239, 951.
doi: 10.1016/j.snb.2016.08.087
L. C. Shriver-Lake, D. Zabetakis, W. J. Dressick, D. A. Stenger, and S. A. Trammell, Sensors (Switzerland), 2018, 18, 328.
pmcid: 5855869 doi: 10.3390/s18020328
A. Balamurugan and S.-M. Chen, Electroanalysis, 2007, 19, 1616.
doi: 10.1002/elan.200703892
Z. Li, J. Chen, D. Pan, W. Tao, L. Nie, and S. Yao, Electrochim. Acta, 2006, 51, 4255.
doi: 10.1016/j.electacta.2005.12.004
A. Z. Ernst, L. Sun, K. Wiaderek, A. Kolary, S. Zoladek, P. J. Kulesza, and J. A. Cox, Electroanalysis, 2007, 19, 2103.
doi: 10.1002/elan.200703925
X. Zhang, W. Wu, J. Wang, C. Liu, and S. Qian, J. Mater. Res., 2008, 23, 18.
doi: 10.1557/JMR.2008.0028
T. Dong, J. Du, M. Cao, and C. Hu, J. Cluster Sci., 2010, 21, 155.
doi: 10.1007/s10876-010-0302-1
S. S. Hassan, Y. Liu, Sirajuddin, A. R. Solangi, A. M. Bond, and J. Zhang, Anal. Chim. Acta, 2013, 803, 41.
pubmed: 24216195 doi: 10.1016/j.aca.2013.04.036
M. Skunik and P. J. Kulesza, Anal. Chim. Acta, 2009, 631, 153.
pubmed: 19084620 doi: 10.1016/j.aca.2008.10.031
H. Y. Zhang, A. J. Miao, and M. Jiang, Mater. Chem. Phys., 2013, 141, 482.
doi: 10.1016/j.matchemphys.2013.05.047
G. G. Papagianni, D. V. Stergiou, G. S. Armatas, M. G. Kanatzidis, and M. I. Prodromidis, Sens. Actuators, B, 2012, 173, 346.
doi: 10.1016/j.snb.2012.07.020
J. Liu, L. Cheng, and S. Dong, Electroanalysis, 2002, 14, 569.
doi: 10.1002/1521-4109(200205)14:9<569::AID-ELAN569>3.0.CO;2-X
L. Bi, Y. Shen, J. Jiang, E. Wang, and S. Dong, Anal. Chim. Acta, 2005, 534, 343.
doi: 10.1016/j.aca.2004.11.040
Y. Li, W. Bu, L. Wu, and C. Sun, Sens. Actuators, B, 2005, 107, 921.
doi: 10.1016/j.snb.2004.12.040
D. M. Fernandes, A. Teixeira, and C. Freire, Langmuir, 2015, 31, 1855.
pubmed: 25603457 doi: 10.1021/la5043266
X. Wang, Y. Zhao, Z. Di, L. Zhang, Z. Bai, H. Pang, and H. Ma, Int. J. Electrochem. Sci., 2018, 13, 8454.
doi: 10.20964/2018.09.72
L. H. Bi, T. McCormac, S. Beloshapkin, and E. Dempsey, Electroanalysis, 2008, 20, 38.
doi: 10.1002/elan.200704021
W. Guo, X. Tong, and S. Liu, Electrochim. Acta, 2015, 173, 540.
doi: 10.1016/j.electacta.2015.05.097
Z. Ma, Y. Qiu, H. Yang, Y. Huang, J. Liu, Y. Lu, C. Zhang, and P. Hu, ACS Appl. Mater. Int., 2015, 7, 22036.
doi: 10.1021/acsami.5b07046
X. Li, L. Sun, X. Yang, K. Zhou, G. Zhang, Z. Tong, C. Wang, and J. Sha, Analyst, 2019, 144, 3347.
pubmed: 30976770 doi: 10.1039/C9AN00163H
B. Mbage, Y. Li, H. Si, X. Zhang, Y. Li, X. Wang, A. Salah, and K. Zhang, Sens. Actuators, B, 2020, 304, 127429.
doi: 10.1016/j.snb.2019.127429
R. Tian, B. Zhang, M. Zhao, H. Zou, C. Zhang, Y. Qi, and Q. Ma, RSC Adv., 2019, 9, 12209.
pubmed: 35515876 pmcid: 9063527 doi: 10.1039/C9RA00505F
L. Monser, S. Sadok, G. M. Greenway, I. Shah, and R. F. Uglow, Talanta, 2002, 57, 511.
pubmed: 18968650 doi: 10.1016/S0039-9140(02)00057-7
B. Fang, D. Chen, Q. Huang, Y. Wei, and G. Wang, Electroanalysis, 2008, 20, 1234.
doi: 10.1002/elan.200704171
H. Ji, L. Zhu, D. Liang, Y. Liu, L. Cai, S. Zhang, and S. Liu, Electrochim. Acta, 2009, 54, 7429.
doi: 10.1016/j.electacta.2009.07.076
S. Kakhki and E. Shams, J. Electroanal. Chem., 2013, 704, 249.
doi: 10.1016/j.jelechem.2013.01.017
S. Kakhki, E. Shams, and M. M. Barsan, Electroanalysis, 2013, 25, 2100.
doi: 10.1002/elan.201300235
Ö. A. Yokus, F. Kardas, O. Akyildirim, T. Eren, N. Atar, and M. L. Yola, Sens. Actuators, B, 2016, 233, 47.
doi: 10.1016/j.snb.2016.04.050
A. A. Ensafi, M. Gorgabi-Khorzoughi, B. Rezaei, and M. Jafari-Asl, J. Taiwan Inst. Chem. Eng., 2017, 78, 56.
doi: 10.1016/j.jtice.2017.06.001
A. Petrova, A. Bulatov, A. Vishnikin, L. Moskvin, R. Ishimatsu, K. Nakano, and T. Imato, Anal. Sci., 2015, 31, 529.
pubmed: 26063015 doi: 10.2116/analsci.31.529
J. A. Cox, S. D. Holmstrom, and M. E. Tess, Talanta, 2000, 52, 1081.
pubmed: 18968070 doi: 10.1016/S0039-9140(00)00477-X
G. L. Turdean, A. Curulli, I. C. Popescu, C. Rosu, and G. Palleschi, Electroanalysis, 2002, 14, 1550.
doi: 10.1002/1521-4109(200211)14:22<1550::AID-ELAN1550>3.0.CO;2-6
F. Boussema, A. J. Gross, F. Hmida, B. Ayed, H. Majdoub, S. Cosnier, A. Maaref, and M. Holzinger, Biosens. Bioelectron., 2018, 109, 20.
pubmed: 29524913 doi: 10.1016/j.bios.2018.02.060
S. Liu, J. Tian, L. Wang, Y. Zhang, Y. Luo, H. Li, A. M. Asiri, A. O. Al-Youbi, and X. Sun, ChemPlusChem, 2012, 77, 541.
doi: 10.1002/cplu.201200051
Y. He, X. Li, X. Xu, J. Pan, and X. Niu, J. Mater. Chem. B, 2018, 6, 5750.
pubmed: 32254981 doi: 10.1039/C8TB01853G
A. Saeed, M. Umer, N. Yamasaki, S. Azuma, T. Ueda, and M. J. A. Shiddiky, ChemElectroChem, 2020, 7, 3943.
doi: 10.1002/celc.202000544
Y. Jia, S. Sun, X. Cui, X. Wang, and L. Yang, Talanta, 2019, 205, 120139.
pubmed: 31450453 doi: 10.1016/j.talanta.2019.120139
M. Yang, D. S. Kim, T. J. Lee, S. J. Lee, K. G. Lee, and B. G. Choi, J. Colloid Interface Sci., 2016, 468, 51.
pubmed: 26828273 doi: 10.1016/j.jcis.2016.01.047
H. Katano, S. Taira, K. Uematsu, and H. Kimoto, Anal. Sci., 2013, 29, 1021.
pubmed: 24212726 doi: 10.2116/analsci.29.1021
H. Katano, M. Takakuwa, T. Itoh, and T. Hibi, Anal. Sci., 2015, 31, 1291.
pubmed: 26656820 doi: 10.2116/analsci.31.1291
H. Katano, M. Takakuwa, H. Hayakawa, and H. Kimoto, Anal. Sci., 2016, 32, 701.
pubmed: 27302593 doi: 10.2116/analsci.32.701
H. Zhang, A. Xie, Y. Shen, L. Qiu, and X. Tian, Phys. Chem. Chem. Phys., 2012, 14, 12757.
pubmed: 22890151 doi: 10.1039/c2cp41561e
S. Li, H. Ma, K. P. O’Halloran, H. Pang, H. Ji, and C. Zhou, Electrochim. Acta, 2013, 108, 717.
doi: 10.1016/j.electacta.2013.07.033
C. Zhou, S. Li, W. Zhu, H. Pang, and H. Ma, Electrochim. Acta, 2013, 113, 454.
doi: 10.1016/j.electacta.2013.09.109
W. Zhu, W. Zhang, S. Li, H. Ma, W. Chen, and H. Pang, Sens. Actuators, B, 2013, 181, 773.
doi: 10.1016/j.snb.2013.01.050
D. M. Fernandes and C. Freire, ChemElectroChem, 2015, 2, 269.
doi: 10.1002/celc.201402271
L. Zhang, L. Ning, S. Li, H. Pang, Z. Zhang, H. Ma, and H. Yan, RSC Adv., 2016, 6, 66468.
doi: 10.1039/C6RA09819C
W. Zhang, G. Jia, Z. Li, C. Yuan, Y. Bai, and D. Fu, Adv. Mater. Interfaces, 2017, 4, 1601241.
doi: 10.1002/admi.201601241
J. Jiao, J. Zuo, H. Pang, L. Tan, T. Chen, and H. Ma, J. Electroanal. Chem., 2018, 827, 103.
doi: 10.1016/j.jelechem.2018.09.014
X. Wang, Y. Zhao, D. Zhang, S. Rong, and H. Ma, Int. J. Electrochem. Sci., 2019, 14, 3595.
doi: 10.20964/2019.04.08
P. Li, S. Ye, S. Chen, J. Xiong, L. Wang, and Y. Song, Asian J. Chem., 2013, 25, 1420.
W. Zhang, D. Du, D. Gunaratne, R. Colby, Y. Lin, and J. Laskin, Electroanalysis, 2014, 26, 178.
doi: 10.1002/elan.201300343
D. Zhu, W. Zhu, J. Xin, L. Tan, X. Wang, H. Pang, and H. Ma, New J. Chem., 2019, 43, 9420.
doi: 10.1039/C9NJ01429B
D. M. Fernandes, M. Nunes, B. Bachiller-Baeza, I. Rodríguez-Ramos, A. Guerrero-Ruiz, C. Delerue-Matos, and C. Freire, J. Solid State Electrochem., 2017, 21, 1059.
doi: 10.1007/s10008-016-3463-5
X. Kong, Y. Wang, Q. Zhang, T. Zhang, Q. Teng, L. Wang, H. Wang, and Y. Zhang, J. Colloid Interface Sci., 2017, 505, 615.
pubmed: 28651201 doi: 10.1016/j.jcis.2017.06.068
L. Wang, T. Meng, J. Sun, S. Wu, M. Zhang, H. Wang, and Y. Zhang, Anal. Chim. Acta, 2019, 1047, 28.
pubmed: 30567661 doi: 10.1016/j.aca.2018.09.042
A. H. Oghli and A. Soleymanpour, Mater. Sci. Eng. C, 2020, 108, 110407.
doi: 10.1016/j.msec.2019.110407
A. B. Vishnikin, M. K. E. A. Al-Shwaiyat, G. A. Petrushina, L. P. Tsiganok, V. Andruch, Y. R. Bazel, H. Sklenárová, and P. Solich, Talanta, 2012, 96, 230.
pubmed: 22817955 doi: 10.1016/j.talanta.2012.02.049
J. Cai, G. T. Zhu, X. M. He, Z. Zhang, R. Q. Wang, and Y. Q. Feng, Talanta, 2017, 170, 252.
pubmed: 28501167 doi: 10.1016/j.talanta.2017.04.020
M. L. Yola, N. Atar, T. Eren, H. Karimi-Maleh, and S. Wang, RSC Adv., 2015, 5, 65953.
doi: 10.1039/C5RA07443F
B. Ertan, T. Eren, I. Ermis, H. Saral, N. Atar, and M. L. Yola, J. Colloid Interface Sci., 2016, 470, 14.
pubmed: 26928060 doi: 10.1016/j.jcis.2016.02.036
M. L. Yola, C. Göde, and N. Atar, Electrochim. Acta, 2017, 246, 135.
doi: 10.1016/j.electacta.2017.06.053
Z. Zhang, Y. Li, X. Liu, Y. Zhang, and D. Wang, Int. J. Electrochem. Sci., 2018, 13, 2986.
doi: 10.20964/2018.03.67
N. Thakur, M. Kumar, S. Das Adhikary, D. Mandal, and T. C. Nagaiah, Chem. Commun., 2019, 55, 5021.
doi: 10.1039/C9CC01534E
D. Zhu, D. Guo, L. Zhang, L. Tan, H. Pang, H. Ma, and M. Zhai, Sens. Actuators, B, 2019, 281, 893.
doi: 10.1016/j.snb.2018.10.151
J. Ding and T. Osakai, Electroanalysis, 2001, 13, 384.
doi: 10.1002/1521-4109(200104)13:5<384::AID-ELAN384>3.0.CO;2-R
H. M. Merken and G. R. Beecher, J. Agric. Food Chem., 2000, 48, 577.
pubmed: 10725120 doi: 10.1021/jf990872o
P. Fletcher, K. N. Andrew, A. C. Calokerinos, S. Forbes, and P. J. Worsfold, Luminescence, 2001, 16, 1.
pubmed: 11180653 doi: 10.1002/bio.607
L. Pillonel, S. Ampuero, R. Tabacchi, and J. Bosset, Eur. Food Res. Technol., 2003, 216, 179.
doi: 10.1007/s00217-002-0629-4
R. Karoui and J. De Baerdemaeker, Food Chem., 2007, 102, 621.
doi: 10.1016/j.foodchem.2006.05.042
F. Hernández and M. Ibáñez, in “Liquid Chromatography: Applications”, 2013, Elsevier, Amsterdam, Netherlands, 319–336.
doi: 10.1016/B978-0-12-415806-1.00012-7
I. C. F. R. Ferreira and M. Carocho, in “Encyclopedia of Analytical Science”, 2019, Elsevier, 419–427.
M. Hernández-Mesa, D. Moreno-González, F. J. Lara and A. M. García-Campaña, in “Encyclopedia of Analytical Science”, 2019, Elsevier, 358–366.
H. Xu, Z. Bai, G. Wang, K. P. O’Halloran, L. Tan, H. Pang, and H. Ma, Microchim. Acta, 2017, 184, 4295.
doi: 10.1007/s00604-017-2447-1
A. Babakhanian, S. Kaki, M. Ahmadi, H. Ehzari, and A. Pashabadi, Biosens. Bioelectron., 2014, 60, 185.
pubmed: 24800683 doi: 10.1016/j.bios.2014.03.058
T. Zhang, M. Liu, Q. Zhang, Y. Wang, X. Kong, L. Wang, H. Wang, and Y. Zhang, Analyst, 2017, 142, 2603.
pubmed: 28603802 doi: 10.1039/C7AN00493A
R. Xing, L. Tong, X. Zhao, H. Liu, P. Ma, J. Zhao, X. Liu, and S. Liu, Sens. Actuators, B, 2019, 283, 35.
doi: 10.1016/j.snb.2018.11.129
M. I. S. Verissimo, J. A. F. Gamelas, M. M. Q. Sirnòes, D. V. Evtuguin, and M. T. S. R. Gomes, Sens. Actuators, B, 2018, 255, 2608.
doi: 10.1016/j.snb.2017.09.068
M. I. S. Verissimo, J. A. F. Gamelas, D. V. Evtuguin, and M. T. S. R. Gomes, Food Chem., 2017, 220, 420.
pubmed: 27855921 doi: 10.1016/j.foodchem.2016.09.204
T. Zhang, L. Qin, S. Z. Kang, G. Li, and X. Li, Sens. Actuators, B, 2017, 242, 1129.
doi: 10.1016/j.snb.2016.09.134
N. Atar, M. L. Yola, and T. Eren, Appl. Surf. Sci., 2016, 362, 315.
doi: 10.1016/j.apsusc.2015.11.222
R. Amorati and L. Valgimigli, Free Radical Res., 2015, 49, 633.
doi: 10.3109/10715762.2014.996146
K. Masisi, T. Beta, and M. H. Moghadasian, Food Chem., 2016, 796, 90.
doi: 10.1016/j.foodchem.2015.09.021
M. P. Cañizares, M. T. Tena, and M. D. Luque De Castro, Anal. Chim. Acta, 1996, 323, 55.
doi: 10.1016/0003-2670(95)00613-3
M. Abderrahim, S. M. Arribas, and L. Condezo-Hoyos, Talanta, 2016, 152, 82.
pubmed: 26992497 doi: 10.1016/j.talanta.2016.01.051
A. S. Ahmad, N. Rahman, and F. Islam, J. Anal. Chem., 2004, 59, 119.
doi: 10.1023/B:JANC.0000014736.59554.5c
T. Ueda, T. Okumura, Y. Tanaka, S. Akase, T. Shimamura, and H. Ukeda, Anal. Sci., 2016, 32, 825.
pubmed: 27506707 doi: 10.2116/analsci.32.825
Y. Tanaka, T. Hasegawa, T. Shimamura, H. Ukeda, and T. Ueda, J. Electroanal. Chem., 2018, 828, 102.
doi: 10.1016/j.jelechem.2018.09.024
H. Shi, N. Li, Z. Sun, T. Wang, and L. Xu, J. Phys. Chem. Solids, 2018, 120, 57.
doi: 10.1016/j.jpcs.2018.04.014
P. Wang, X. Zou, H. Tan, S. Wu, L. Jiang, and G. Zhu, J. Mater. Chem. C, 2018, 6, 5412.
doi: 10.1039/C8TC00987B
A. L. Kukla, A. S. Pavluchenko, Y. M. Shirshov, N. V. Konoshchuk, and O. Y. Posudievsky, Sens. Actuators, B, 2009, 135, 541.
doi: 10.1016/j.snb.2008.09.027
T. Wang, Z. Sun, Y. Wang, R. Liu, M. Sun, and L. Xu, Sens. Actuators, B, 2017, 246, 769.
doi: 10.1016/j.snb.2017.02.108
S. A. Krutovertsev, O. M. Ivanova, and S. I. Sorokin, J. Anal. Chem., 2001, 56, 1057.
doi: 10.1023/A:1012569127685
Y. Gao, S. Yao, J. Gong, and L. Qu, Macromol. Rapid Commun., 2007, 28, 286.
doi: 10.1002/marc.200600672
Y. Shen, J. Peng, H. Zhang, C. Meng, and F. Zhang, J. Solid State Chem., 2012, 185, 225.
doi: 10.1016/j.jssc.2011.10.048
B. Xu, L. Xu, G. Gao, Z. Li, Y. Liu, W. Guo, and L. Jia, New J. Chem., 2008, 32, 1008.
doi: 10.1039/b801764f
M. I. Khan, N. R. Putrevu, S. Ayesh, E. H. Yohannes, B. Cage, and R. J. Doedens, Cryst. Growth Des., 2013, 13, 4667.
doi: 10.1021/cg4007444
Q. Zhang, T. Wang, Z. Sun, L. Xi, and L. Xu, Sens. Actuators, B, 2018, 272, 289.
doi: 10.1016/j.snb.2018.05.169
I. Treglazov, L. Leonova, Y. Dobrovolsky, A. Ryabov, A. Vakulenko, and S. Vassiliev, Sens. Actuators, B, 2005, 106, 164.
doi: 10.1016/j.snb.2004.05.053
Y. Gong, Q. Hu, C. Wang, L. Zang, and L. Yu, Langmuir, 2016, 32, 421.
pubmed: 26704346 doi: 10.1021/acs.langmuir.5b03883
Y. Guo, Y. Gong, Y. Gao, J. Xiao, T. Wang, and L. Yu, Langmuir, 2016, 32, 9293.
pubmed: 27548373 doi: 10.1021/acs.langmuir.6b02539
P. Sun, S. Zhang, Z. Xiang, T. Zhao, D. Sun, G. Zhang, M. Chen, K. Guo, and X. Xin, J. Colloid Interface Sci., 2019, 547, 60.
pubmed: 30939345 doi: 10.1016/j.jcis.2019.03.085
H. Zhang, L. Guo, Z. Xie, X. Xin, D. Sun, and S. Yuan, Langmuir, 2016, 32, 13736.
pubmed: 27973851 doi: 10.1021/acs.langmuir.6b03709
A. Wu, P. Sun, N. Sun, Y. Yu, and L. Zheng, Chem.—Eur. J., 2018, 24, 16857.
pubmed: 30171633 doi: 10.1002/chem.201803800
J. Yang, M. Chen, P. Li, F. Cheng, Y. Xu, Z. Li, Y. Wang, and H. Li, Sens. Actuators, B, 2018, 273, 153.
doi: 10.1016/j.snb.2018.06.024
Y. Guo, Y. Gong, L. Qi, Y. Gao, and L. Yu, J. Colloid Interface Sci., 2017, 485, 280.
pubmed: 27684785 doi: 10.1016/j.jcis.2016.09.047
H. Liu, Y. Lv, S. Li, F. Yang, S. Liu, C. Wang, J. Q. Sun, H. Meng, and G. G. Gao, J. Mater. Chem. C, 2017, 5, 9383.
doi: 10.1039/C7TC01263B
Z. Fu, W. Gao, T. Yu, and L. Bi, Talanta, 2019, 195, 463.
pubmed: 30625571 doi: 10.1016/j.talanta.2018.11.091
H. Wu, H. Chen, M. Fu, R. Li, P. Ma, J. Wang, and J. Niu, Dyes Pigm., 2019, 171, 107696.
doi: 10.1016/j.dyepig.2019.107696
T. Dutta and S. Sarkar, Appl. Nanosci., 2016, 6, 1191.
doi: 10.1007/s13204-016-0529-8
Y. Li, H. Zhu, and X. Yang, Talanta, 2009, 80, 870.
pubmed: 19836566 doi: 10.1016/j.talanta.2009.08.008
J. Qian, K. Wang, Y. Jin, X. Yang, L. Jiang, Y. Yan, X. Dong, H. Li, and B. Qiu, Biosens. Bioelectron., 2014, 57, 149.
pubmed: 24583685 doi: 10.1016/j.bios.2014.02.005
M. Ammam, B. Keita, L. Nadjo, and J. Fransaer, Sens. Actuators, B, 2009, 142, 347.
doi: 10.1016/j.snb.2009.08.036
R. Yavari, S. J. Ahmadi, Y. D. Huang, A. R. Khanchi, G. Bagheri, and J. M. He, Talanta, 2009, 77, 1179.
pubmed: 19064109 doi: 10.1016/j.talanta.2008.08.026
M. Ammam, B. Keita, L. Nadjo, I. M. Mbomekalle, and J. Fransaer, J. Electroanal. Chem., 2010, 645, 65.
doi: 10.1016/j.jelechem.2010.03.026
M. Jiang, E. Wang, L. Xu, Z. Kang, and S. Lian, J. Solid State Chem., 2004, 177, 1776.
doi: 10.1016/j.jssc.2003.12.039
S. Herrmann, J. T. Margraf, T. Clark, and C. Streb, Chem. Commun., 2015, 57, 13702.
doi: 10.1039/C5CC05730B
T. Ueda, K. Yamashita, and A. Onda, Appl. Catal. A, 2014, 485, 181.
doi: 10.1016/j.apcata.2014.07.032
S. Azuma, T. Kadoguchi, Y. Eguchi, H. Hirabaru, H. Ota, M. Sadakane, K. Yanagisawa, T. Hasegawa, and T. Ueda, Dalton Trans., 2020, 49, 2766.
pubmed: 32065176 doi: 10.1039/C9DT04737A
H. Hirabaru, D. Kawamoto, M. Ohnishi, H. Ota, M. Sadakane, K. Yanagisawa, T. Hasegawa, and T. Ueda, Eur. J. Inorg. Chem., 2020, 666.

Auteurs

Tadaharu Ueda (T)

Department of Marine Resource Science Faculty of Agriculture and Marine Science, Kochi University, Nankoku, 783-8502, Japan. chuji@kochi-u.ac.jp.
Center for Advanced Marine Core Research, Kochi University, Nankoku, 783-8502, Japan. chuji@kochi-u.ac.jp.

Classifications MeSH