Afadin (AF6) in cancer progression: A multidomain scaffold protein with complex and contradictory roles.


Journal

BioEssays : news and reviews in molecular, cellular and developmental biology
ISSN: 1521-1878
Titre abrégé: Bioessays
Pays: United States
ID NLM: 8510851

Informations de publication

Date de publication:
01 2021
Historique:
received: 13 08 2020
revised: 17 09 2020
accepted: 24 09 2020
pubmed: 10 11 2020
medline: 19 8 2021
entrez: 9 11 2020
Statut: ppublish

Résumé

Adherens (AJ) and tight junctions (TJ) maintain cell-cell adhesions and cellular polarity in normal tissues. Afadin, a multi-domain scaffold protein, is commonly found in both adherens and tight junctions, where it plays both structural and signal-modulating roles. Afadin is a complex modulator of cellular processes implicated in cancer progression, including signal transduction, migration, invasion, and apoptosis. In keeping with the complexities associated with the roles of adherens and tight junctions in cancer, afadin exhibits both tumor suppressive and pro-metastatic functions. In this review, we will explore the dichotomous roles that afadin plays during cancer progression.

Identifiants

pubmed: 33165933
doi: 10.1002/bies.202000221
doi:

Substances chimiques

Microfilament Proteins 0
afadin 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2000221

Subventions

Organisme : CIHR
ID : MOP-136907
Pays : Canada

Informations de copyright

© 2020 Wiley Periodicals LLC.

Références

McCaffrey, L. M., & Macara, I. G. (2011). Epithelial organization, cell polarity and tumorigenesis. Trends Cell Biol., 21(12), 727-735. https://doi.org/10.1016/j.tcb.2011.06.005
Friedl, P., Noble, P. B., Walton, P. A., Laird, D. W., Chauvin, P. J., Tabah, R. J., … Zanker, K. S. (1995). Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res., 55(20), 4557-4560. https://www.ncbi.nlm.nih.gov/pubmed/7553628
Friedl, P., Locker, J., Sahai, E., & Segall, J. E. (2012). Classifying collective cancer cell invasion. Nat. Cell Biol., 14(8), 777-783. https://doi.org/10.1038/ncb2548
Cheung, K. J., & Ewald, A. J. (2016). A collective route to metastasis: Seeding by tumor cell clusters. Science, 352(6282), 167. https://doi.org/10.1126/science.aaf6546
Chao, Y., Wu, Q., Acquafondata, M., Dhir, R., & Wells, A. (2012). Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron., 5(1), 19-28. https://doi.org/10.1007/s12307-011-0085-4
Williams, E. D., Gao, D., Redfern, A., & Thompson, E. W. (2019). Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nature reviews. Cancer, 19(12), 716-732. https://doi.org/10.1038/s41568-019-0213-x
Tabariès, S., & Siegel, P. M. (2017). The role of claudins in cancer metastasis. Oncogene, 36(9), 1176-1190. https://doi.org/10.1038/onc.2016.289
Desai, B. V., Harmon, R. M., & Green, K. J. (2009). Desmosomes at a glance. J. Cell Sci., 122(24), 4401. https://doi.org/10.1242/jcs.037457
Zihni, C., Mills, C., Matter, K., & Balda, M. S. (2016). Tight junctions: From simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol., 17(9), 564-580. https://doi.org/10.1038/nrm.2016.80
Meng, W., & Takeichi, M. (2009). Adherens junction: Molecular architecture and regulation. Cold Spring Harbor Perspect. Biol., 1(6), a002899-a002899. https://doi.org/10.1101/cshperspect.a002899
Hartsock, A., & Nelson, W. J. (2008). Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Bioch. Biophys. Acta, 1778(3), 660-669. https://doi.org/10.1016/j.bbamem.2007.07.012
Goodenough, D. A., & Paul, D. L. (2009). Gap junctions. Cold Spring Harbor Perspect. Biol., 1(1), a002576-a002576. https://doi.org/10.1101/cshperspect.a002576
Delva, E., Tucker, D. K., & Kowalczyk, A. P. (2009). The desmosome. Cold Spring Harbor Perspect. Biol., 1(2), a002543-a002543. https://doi.org/10.1101/cshperspect.a002543
Janiszewska, M., Primi, M. C., & Izard, T. (2020). Cell adhesion in cancer: Beyond the migration of single cells. J. Biol. Chem., 295(8), 2495-2505. https://doi.org/10.1074/jbc.REV119.007759
Mandai, K., Nakanishi, H., Satoh, A., Obaishi, H., Wada, M., Nishioka, H., … Takai, Y. (1997). Afadin: A novel actin filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction. J. Cell Biol., 139(2), 517-528. https://doi.org/10.1083/jcb.139.2.517
Mandai, K., Rikitake, Y., Shimono, Y., & Takai, Y. (2013). Afadin/AF-6 and canoe: Roles in cell adhesion and beyond. Prog. Mol. Biol. Transl. Sci., 116, 433-454. https://doi.org/10.1016/B978-0-12-394311-8.00019-4
Takahashi, K., Nakanishi, H., Miyahara, M., Mandai, K., Satoh, K., Satoh, A., … Takai, Y. (1999). Nectin/PRR: An immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J. Cell Biol., 145(3), 539-549. https://doi.org/10.1083/jcb.145.3.539
Niessen, C. M., & Gottardi, C. J. (2008). Molecular components of the adherens junction. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1778(3), 562-571. https://doi.org/10.1016/j.bbamem.2007.12.015
Kurita, S., Ogita, H., & Takai, Y. (2011). Cooperative role of nectin-nectin and nectin-afadin interactions in formation of nectin-based cell-cell adhesion. J. Biol. Chem., 286(42), 36297-36303. https://doi.org/10.1074/jbc.M111.261768
Tachibana, K., Nakanishi, H., Mandai, K., Ozaki, K., Ikeda, W., Yamamoto, Y., … Takai, Y. (2000). Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins. J. Cell Biol., 150(5), 1161-1176. https://doi.org/10.1083/jcb.150.5.1161
Honda, T., Shimizu, K., Kawakatsu, T., Yasumi, M., Shingai, T., Fukuhara, A., … Takai, Y. (2003). Antagonistic and agonistic effects of an extracellular fragment of nectin on formation of E-cadherin-based cell-cell adhesion. Genes Cells, 8(1), 51-63. https://doi.org/10.1046/j.1365-2443.2003.00616.x
Sato, T., Fujita, N., Yamada, A., Ooshio, T., Okamoto, R., Irie, K., & Takai, Y. (2006). Regulation of the assembly and adhesion activity of E-cadherin by nectin and afadin for the formation of adherens junctions in Madin-Darby canine kidney cells. J. Biol. Chem., 281(8), 5288-5299. https://doi.org/10.1074/jbc.M510070200
Rimm, D. L., Koslov, E. R., Kebriaei, P., Cianci, C. D., & Morrow, J. S. (1995). Alpha 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc. Natl. Acad. Sci. USA, 92(19), 8813-8817. https://doi.org/10.1073/pnas.92.19.8813
Yamada, S., Pokutta, S., Drees, F., Weis, W. I., & Nelson, W. J. (2005). Deconstructing the cadherin-catenin-actin complex. Cell, 123(5), 889-901. https://doi.org/10.1016/j.cell.2005.09.020
Rangarajan, E. S., & Izard, T. (2013). Dimer asymmetry defines α-catenin interactions. Nat. Struct. Mol. Biol., 20(2), 188-193. https://doi.org/10.1038/nsmb.2479
<number>[26]</number>Sakakibara, S., Mizutani, K., Sugiura, A., Sakane, A., Sasaki, T., Yonemura, S., & Takai, Y. (2020). Afadin regulates actomyosin organization through αE-catenin at adherens junctions. J. Cell Biol., 219(5), 1-13. https://doi.org/10.1083/jcb.201907079
Mandai, K., Nakanishi, H., Satoh, A., Takahashi, K., Satoh, K., Nishioka, H., … Takai, Y. (1999). Ponsin/SH3P12: An l-afadin- and vinculin-binding protein localized at cell-cell and cell-matrix adherens junctions. J. Cell Biol., 144(5), 1001-1018. https://doi.org/10.1083/jcb.144.5.1001
Asada, M., Irie, K., Morimoto, K., Yamada, A., Ikeda, W., Takeuchi, M., & Takai, Y. (2003). ADIP, a novel afadin- and α-actinin-binding protein localized at cell-cell adherens junctions. J. Biol. Chem., 278(6), 4103-4111. https://doi.org/10.1074/jbc.M209832200
Ooshio, T., Irie, K., Morimoto, K., Fukuhara, A., Imai, T., & Takai, Y. (2004). Involvement of LMO7 in the association of two cell-cell adhesion molecules, nectin and E-cadherin, through afadin and α-actinin in epithelial cells. J. Biol. Chem., 279(30), 31365-31373. https://doi.org/10.1074/jbc.M401957200
Kurita, S., Yamada, T., Rikitsu, E., Ikeda, W., & Takai, Y. (2013). Binding between the junctional proteins afadin and PLEKHA7 and implication in the formation of adherens junction in epithelial cells. J. Biol. Chem., 288(41), 29356-29368. https://doi.org/10.1074/jbc.M113.453464
Takai, Y., & Nakanishi, H. (2003). Nectin and afadin: Novel organizers of intercellular junctions. J. Cell Sci., 116(Pt 1), 17-27. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12456712
Rouaud, F., Sluysmans, S., Flinois, A., Shah, J., Vasileva, E., & Citi, S. (2020). Scaffolding proteins of vertebrate apical junctions: Structure, functions and biophysics. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1862, 183399. https://doi.org/10.1016/j.bbamem.2020.183399
Ooshio, T., Kobayashi, R., Ikeda, W., Miyata, M., Fukumoto, Y., Matsuzawa, N., … Takai, Y. (2010). Involvement of the interaction of afadin with ZO-1 in the formation of tight junctions in Madin-Darby canine kidney cells. J. Biol. Chem., 285(7), 5003-5012. https://doi.org/10.1074/jbc.M109.043760
Yamamoto, T., Harada, N., Kawano, Y., Taya, S., & Kaibuchi, K. (1999). In vivo interaction of AF-6 with activated Ras and ZO-1. Biochem. Biophys. Res. Commun., 259(1), 103-107. https://doi.org/10.1006/bbrc.1999.0731
Sakakibara, S., Maruo, T., Miyata, M., Mizutani, K., & Takai, Y. (2018). Requirement of the F-actin-binding activity of l-afadin for enhancing the formation of adherens and tight junctions. Genes Cells, 23(3), 185-199. https://doi.org/10.1111/gtc.12566
Matter, K., Aijaz, S., Tsapara, A., & Balda, M. S. (2005). Mammalian tight junctions in the regulation of epithelial differentiation and proliferation. Curr. Opin. Cell Biol., 17(5), 453-458. https://doi.org/10.1016/j.ceb.2005.08.003
Salvador, E., Burek, M., & Förster, C. Y. (2016). Tight junctions and the tumor microenvironment. Curr. Pathobiol. Rep., 4, 135-145. https://doi.org/10.1007/s40139-016-0106-6
Toyoshima, D., Mandai, K., Maruo, T., Supriyanto, I., Togashi, H., Inoue, T., … Takai, Y. (2014). Afadin regulates puncta adherentia junction formation and presynaptic differentiation in hippocampal neurons. PLoS One, 9(2), e89763-e89763. https://doi.org/10.1371/journal.pone.0089763
Ozaki-Kuroda, K., Nakanishi, H., Ohta, H., Tanaka, H., Kurihara, H., Mueller, S., … Takai, Y. (2002). Nectin couples cell-cell adhesion and the actin scaffold at heterotypic testicular junctions. Curr. Biol., 12(13), 1145-1150. https://doi.org/10.1016/S0960-9822(02)00922-3
Lynch, A. M., Grana, T., Cox-Paulson, E., Couthier, A., Cameron, M., Chin-Sang, I., … Hardin, J. (2012). A genome-wide functional screen shows MAGI-1 is an L1CAM-dependent stabilizer of apical junctions in C. elegans. Current biology: CB, 22(20), 1891-1899. https://doi.org/10.1016/j.cub.2012.08.024
Watari, Y., Kariya, K.-i., Shibatohge, M., Liao, Y., Hu, C.-D., Goshima, M., … Kataoka, T. (1998). Identification of Ce-AF-6, a novel Caenorhabditis elegans protein, as a putative Ras effector. Gene, 224(1), 53-58. https://doi.org/10.1016/S0378-1119(98)00527-7
Takahashi, K., Matsuo, T., Katsube, T., Ueda, R., & Yamamoto, D. (1998). Direct binding between two PDZ domain proteins Canoe and ZO-1 and their roles in regulation of the Jun N-terminal kinase pathway in Drosophila morphogenesis. Mech. Dev., 78(1), 97-111. https://doi.org/10.1016/S0925-4773(98)00151-8
Matsuo, T., Takahashi, K., Suzuki, E., & Yamamoto, D. (1999). The Canoe protein is necessary in adherens junctions for development of ommatidial architecture in the Drosophila compound eye. Cell Tissue Res., 298(3), 397-404. https://doi.org/10.1007/s004419900107
Sawyer, J. K., Harris, N. J., Slep, K. C., Gaul, U., & Peifer, M. (2009). The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction. J. Cell Biol., 186(1), 57-73. https://doi.org/10.1083/jcb.200904001
Miyamoto, H., Nihonmatsu, I., Kondo, S., Ueda, R., Togashi, S., Hirata, K., … Yamamoto, D. (1995). Canoe encodes a novel protein containing a GLGF/DHR motif and functions with Notch and scabrous in common developmental pathways in Drosophila. Genes Dev., 9(5), 612-625. https://doi.org/10.1101/gad.9.5.612
Carmena, A., Speicher, S., & Baylies, M. (2006). The PDZ protein Canoe/AF-6 links Ras-MAPK, Notch and Wingless/Wnt signaling pathways by directly interacting with Ras, Notch and Dishevelled. PLoS One, 1, e66. https://doi.org/10.1371/journal.pone.0000066
Saito, S., Matsushima, M., Shirahama, S., Minaguchi, T., Kanamori, Y., Minami, M., & Nakamura, Y. (1998). Complete genomic structure, DNA polymorphisms, and alternative splicing of the human AF -6 Gene. DNA Res., 5(2), 115-120. https://doi.org/10.1093/dnares/5.2.115
Takai, Y., Ikeda, W., Ogita, H., & Rikitake, Y. (2008). The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu. Rev. Cell Dev. Biol., 24(1), 309-342. https://doi.org/10.1146/annurev.cellbio.24.110707.175339
Yates, A., Akanni, W., Amode, M. R., Barrell, D., Billis, K., Carvalho-Silva, D., … Flicek, P. (2016). Ensembl 2016. Nucleic Acids Res., 44(D1), D710-D716. https://doi.org/10.1093/nar/gkv1157
Kobayashi, R., Kurita, S., Miyata, M., Maruo, T., Mandai, K., Rikitake, Y., & Takai, Y. (2014). s-Afadin binds more preferentially to the cell adhesion molecules nectins than l-afadin. Genes Cells, 19(12), 853-863. https://doi.org/10.1111/gtc.12185
Buchert, M., Poon, C., King, J. A. J., Baechi, T., D'Abaco, G., Hollande, F., & Hovens, C. M. (2007). AF6/s-afadin is a dual residency protein and localizes to a novel subnuclear compartment. J. Cell. Physiol., 210(1), 212-223. https://doi.org/10.1002/jcp.20853
Maruo, T., Sakakibara, S., Miyata, M., Itoh, Y., Kurita, S., Mandai, K., … Takai, Y. (2018). Involvement of l-afadin, but not s-afadin, in the formation of puncta adherentia junctions of hippocampal synapses. Mol. Cell. Neurosci., 92, 40-49. https://doi.org/10.1016/j.mcn.2018.06.006
Asakura, T., Nakanishi, H., Sakisaka, T., Takahashi, K., Mandai, K., Nishimura, M., … Takai, Y. (1999). Similar and differential behaviour between the nectin-afadin-ponsin and cadherin-catenin systems during the formation and disruption of the polarized junctional alignment in epithelial cells. Genes Cells, 4(10), 573-581. https://doi.org/10.1046/j.1365-2443.1999.00283.x
Lorger, M., & Moelling, K. (2006). Regulation of epithelial wound closure and intercellular adhesion by interaction of AF6 with actin cytoskeleton. J. Cell Sci., 119(Pt 16), 3385-3398. https://doi.org/10.1242/jcs.03027
Nakata, S., Fujita, N., Kitagawa, Y., Okamoto, R., Ogita, H., & Takai, Y. (2007). Regulation of platelet-derived growth factor receptor activation by afadin through SHP-2: Implications for cellular morphology. J. Biol. Chem., 282(52), 37815-37825. https://doi.org/10.1074/jbc.M707461200
Fukumoto, Y., Kurita, S., Takai, Y., & Ogita, H. (2011). Role of scaffold protein afadin dilute domain-interacting protein (ADIP) in platelet-derived growth factor-induced cell movement by activating Rac protein through Vav2 protein. J. Biol. Chem., 286(50), 43537-43548. https://doi.org/10.1074/jbc.M111.308858
Kuriyama, M., Harada, N., Kuroda, S., Yamamoto, T., Nakafuku, M., Iwamatsu, A., … Kaibuchi, K. (1996). Identification of AF-6 and Canoe as putative targets for Ras. J. Biol. Chem., 271(2), 607-610. https://doi.org/10.1074/jbc.271.2.607
Linnemann, T., Geyer, M., Jaitner, B. K., Block, C., Kalbitzer, H. R., Wittinghofer, A., & Herrmann, C. (1999). Thermodynamic and kinetic characterization of the interaction between the Ras Binding domain of AF6 and members of the Ras subfamily. J. Biol. Chem., 274(19), 13556-13562. https://doi.org/10.1074/jbc.274.19.13556
Manara, E., Baron, E., Tregnago, C., Aveic, S., Bisio, V., Bresolin, S., … Pigazzi, M. (2014). MLL-AF6 fusion oncogene sequesters AF6 into the nucleus to trigger RAS activation in myeloid leukemia. Blood, 124(2), 263-272. https://doi.org/10.1182/blood-2013-09-525741
Zhang, X., Wang, H., Li, Q., & Li, T. (2018). CLDN2 inhibits the metastasis of osteosarcoma cells via down-regulating the afadin/ERK signaling pathway. Cancer Cell Int., 18(1), 160. https://doi.org/10.1186/s12935-018-0662-4
Fournier, G., Cabaud, O., Josselin, E., Chaix, A., Adélaïde, J., Isnardon, D., … Lopez, M. (2011). Loss of AF6/afadin, a marker of poor outcome in breast cancer, induces cell migration, invasiveness and tumor growth. Oncogene, 30(36), 3862-3874. https://doi.org/10.1038/onc.2011.106
Yamamoto, T., Mori, T., Sawada, M., Matsushima, H., Ito, F., Akiyama, M., & Kitawaki, J. (2015). Loss of AF-6/afadin induces cell invasion, suppresses the formation of glandular structures and might be a predictive marker of resistance to chemotherapy in endometrial cancer. Bmc Cancer [Electronic Resource], 15(1), 275. https://doi.org/10.1186/s12885-015-1286-x
Boettner, B., Govek, E. E., Cross, J., & Van Aelst, L. (2000). The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin. Proc. Natl. Acad. Sci. USA, 97(16), 9064-9069. https://doi.org/10.1073/pnas.97.16.9064
Quilliam, L. A., Castro, A. F., Rogers-Graham, K. S., Martin, C. B., Der, C. J., & Bi, C. (1999). M-Ras/R-Ras3, a transforming Ras protein regulated by Sos1, GRF1, and p120 Ras GTPase-activating protein, interacts with the putative Ras effector AF6. J. Biol. Chem., 274(34), 23850-23857. https://doi.org/10.1074/jbc.274.34.23850
Iwasawa, N., Negishi, M., & Oinuma, I. (2012). R-Ras controls axon branching through afadin in cortical neurons. Mol. Biol. Cell, 23(14), 2793-2804. https://doi.org/10.1091/mbc.E12-02-0103
Miyata, M., Ogita, H., Komura, H., Nakata, S., Okamoto, R., Ozaki, M., … Takai, Y. (2009). Localization of nectin-free afadin at the leading edge and its involvement in directional cell movement induced by platelet-derived growth factor. J. Cell Sci., 122(23), 4319. https://doi.org/10.1242/jcs.048439
Su, L., Hattori, M., Moriyama, M., Murata, N., Harazaki, M., Kaibuchi, K., & Minato, N. (2003). AF-6 controls integrin-mediated cell adhesion by regulating Rap1 activation through the specific recruitment of Rap1GTP and SPA-1. J. Biol. Chem., 278(17), 15232-15238. https://doi.org/10.1074/jbc.M211888200
Liedtke, M., Ayton, P. M., Somervaille, T. C. P., Smith, K. S., & Cleary, M. L. (2010). Self-association mediated by the Ras association.(1), domain of AF6 activates the oncogenic potential of MLL-AF6. Blood, 116(1), 63-70. https://doi.org/10.1182/blood-2009-09-243386
Smith, M. J., Ottoni, E., Ishiyama, N., Goudreault, M., Haman, A., Meyer, C., … Ikura, M. (2017). Evolution of AF6-RAS association and its implications in mixed-lineage leukemia. Nat. Commun., 8(1), 1099. https://doi.org/10.1038/s41467-017-01326-5
Lee, H.-J., & Zheng, J. J. (2010). PDZ domains and their binding partners: Structure, specificity, and modification. Cell Commun. Signaling, 8(1), 8. https://doi.org/10.1186/1478-811X-8-8
Satoh-Horikawa, K., Nakanishi, H., Takahashi, K., Miyahara, M., Nishimura, M., Tachibana, K., … Takai, Y. (2000). Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell-cell adhesion activities. J. Biol. Chem., 275(14), 10291-10299. https://doi.org/10.1074/jbc.275.14.10291
Reymond, N., Fabre, S., Lecocq, E., Adelaïde, J., Dubreuil, P., & Lopez, M. (2001). Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. J. Biol. Chem., 276(46), 43205-43215. https://doi.org/10.1074/jbc.M103810200
Reymond, N., Borg, J.-P., Lecocq, E., Adelaide, J., Campadelli-Fiume, G., Dubreuil, P., & Lopez, M. (2000). Human nectin3/PRR3: A novel member of the PVR/PRR/nectin family that interacts with afadin. Gene, 255(2), 347-355. https://doi.org/10.1016/S0378-1119(00)00316-4
Buchert, M., Schneider, S., Meskenaite, V., Adams, M. T., Canaani, E., Baechi, T., … Hovens, C. M. (1999). The Junction-associated protein AF-6 interacts and clusters with specific Eph receptor tyrosine kinases at specialized sites of cell-cell contact in the brain. J. Cell Biol., 144(2), 361-371. https://doi.org/10.1083/jcb.144.2.361
Hock, B., Böhme, B., Karn, T., Yamamoto, T., Kaibuchi, K., Holtrich, U., … Strebhardt, K. (1998). PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor. Proc. Natl. Acad. Sci. USA, 95(17), 9779. https://doi.org/10.1073/pnas.95.17.9779
Li, X., Lynn, B. D., & Nagy, J. I. (2012). The effector and scaffolding proteins AF6 and MUPP1 interact with connexin36 and localize at gap junctions that form electrical synapses in rodent brain. Eur. J. Neurosci., 35(2), 166-181. https://doi.org/10.1111/j.1460-9568.2011.07947.x
Cordenonsi, M., D'Atri, F., Hammar, E., Parry, D. A., Kendrick-Jones, J., Shore, D., & Citi, S. (1999). Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. J. Cell Biol., 147(7), 1569-1582. https://doi.org/10.1083/jcb.147.7.1569
Taya, S., Yamamoto, T., Kano, K., Kawano, Y., Iwamatsu, A., Tsuchiya, T., … Kaibuchi, K. (1998). The Ras target AF-6 is a substrate of the fam deubiquitinating enzyme. J. Cell Biol., 142(4), 1053-1062. https://doi.org/10.1083/jcb.142.4.1053
Lundh, M., Petersen, P. S. S., Isidor, M. S., Kazoka-Sørensen, D. N. M., Plucińska, K., Shamsi, F., … Emanuelli, B. (2019). Afadin is a scaffold protein repressing insulin action via HDAC6 in adipose tissue. EMBO Rep., 20(8), e48216. 10.15252/embr.201948216
Tabariès, S., McNulty, A., Ouellet, V., Annis, M. G., Dessureault, M., Vinette, M., … Siegel, P. M. (2019). Afadin cooperates with Claudin-2 to promote breast cancer metastasis. Genes Dev., 33(3-4), 180-193. https://doi.org/10.1101/gad.319194.118
Ikeda, W., Nakanishi, H., Miyoshi, J., Mandai, K., Ishizaki, H., Tanaka, M., … Takai, Y. (1999). Afadin: A key molecule essential for structural organization of cell-cell junctions of polarized epithelia during embryogenesis. J. Cell Biol., 146(5), 1117-1132. https://doi.org/10.1083/jcb.146.5.1117
Zhadanov, A. B., Provance, D. W. Jr., Speer, C. A., Coffin, J. D., Goss, D., Blixt, J. A., … Mercer, J. A. (1999). Absence of the tight junctional protein AF-6 disrupts epithelial cell-cell junctions and cell polarity during mouse development. Curr. Biol., 9(16), S1-S2. https://doi.org/10.1016/S0960-9822(99)80392-3
Yamamoto, H., Maruo, T., Majima, T., Ishizaki, H., Tanaka-Okamoto, M., Miyoshi, J., … Takai, Y. (2013). Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain. PLoS One, 8(11), e80356. https://doi.org/10.1371/journal.pone.0080356
Tanaka-Okamoto, M., Itoh, Y., Miyoshi, J., Mizoguchi, A., Mizutani, K., Takai, Y., & Inoue, M. (2014). Genetic ablation of afadin causes mislocalization and deformation of Paneth cells in the mouse small intestinal epithelium. PLoS One, 9(10), e110549. https://doi.org/10.1371/journal.pone.0110549
Tanaka-Okamoto, M., Hori, K., Ishizaki, H., Itoh, Y., Onishi, S., Yonemura, S., … Miyoshi, J. (2011). Involvement of afadin in barrier function and homeostasis of mouse intestinal epithelia. J. Cell Sci., 124(Pt 13), 2231-2240. https://doi.org/10.1242/jcs.081000
Yang, Z., Zimmerman, S., Brakeman, P. R., Beaudoin, G. M., Reichardt, L. F., & Marciano, D. K. (2013). <em>De novo</em> lumen formation and elongation in the developing nephron: a central role for afadin in apical polarity. Development (Cambridge, England), 140(8), 1774. https://doi.org/10.1242/dev.087957
Pokutta, S., Drees, F., Takai, Y., Nelson, W. J., & Weis, W. I. (2002). Biochemical and Structural definition of the l-afadin- and actin-binding sites of α-catenin. J. Biol. Chem., 277(21), 18868-18874. https://doi.org/10.1074/jbc.M201463200
Kawabe, H., Hata, Y., Takeuchi, M., Ide, N., Mizoguchi, A., & Takai, Y. (1999). nArgBP2, a novel neural member of ponsin/ArgBP2/Vinexin family that interacts with Synapse-associated Protein 90/Postsynaptic Density-95-associated Protein (SAPAP). J. Biol. Chem., 274(43), 30914-30918. https://doi.org/10.1074/jbc.274.43.30914
Jin, J., Smith, F. D., Stark, C., Wells, C. D., Fawcett, J. P., Kulkarni, S., … Pawson, T. (2004). Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr. Biol., 14(16), 1436-1450. https://doi.org/10.1016/j.cub.2004.07.051
Lough, K. J., Spitzer, D. C., Bergman, A. J., Wu, J. J., Byrd, K. M., & Williams, S. E. (2020). Disruption of the nectin-afadin complex recapitulates features of the human cleft lip/palate syndrome CLPED1. Development (Cambridge, England), 147(21), dev189241. https://doi.org/10.1242/dev.189241
Kanzaki, N., Ogita, H., Komura, H., Ozaki, M., Sakamoto, Y., Majima, T., … Takai, Y. (2008). Involvement of the nectin-afadin complex in PDGF-induced cell survival. J. Cell Sci., 121(Pt 12), 2008-2017. https://doi.org/10.1242/jcs.024620
Hemmings, B. A., & Restuccia, D. F. (2012). PI3K-PKB/Akt pathway. Cold Spring Harbor Perspect. Biol., 4(9), a011189-a011189. https://doi.org/10.1101/cshperspect.a011189
Radziwill, G., Erdmann, R. A., Margelisch, U., & Moelling, K. (2003). The Bcr kinase downregulates Ras signaling by phosphorylating AF-6 and binding to its PDZ domain. Mol. Cell. Biol., 23(13), 4663. https://doi.org/10.1128/MCB.23.13.4663-4672.2003
Severson, E. A., Lee, W. Y., Capaldo, C. T., Nusrat, A., & Parkos, C. A. (2009). Junctional adhesion molecule A interacts with afadin and PDZ-GEF2 to activate Rap1A, regulate β1 integrin levels, and enhance cell migration. Mol. Biol. Cell, 20(7), 1916-1925. https://doi.org/10.1091/mbc.e08-10-1014
Ebnet, K., Schulz, C. U., Meyer zu Brickwedde, M.-K., Pendl, G. G., & Vestweber, D. (2000). Junctional Adhesion Molecule (JAM) interacts with the PDZ domain containing proteins AF-6 and ZO-1. J. Biol. Chem., https://doi.org/10.1074/jbc.M002363200
Miyata, M., Rikitake, Y., Takahashi, M., Nagamatsu, Y., Yamauchi, Y., Ogita, H., … Takai, Y. (2009). Regulation by afadin of cyclical activation and inactivation of Rap1, Rac1, and RhoA small G proteins at leading edges of moving NIH3T3 cells. J. Biol. Chem., 284(36), 24595-24609. https://doi.org/10.1074/jbc.M109.016436
Wittchen, E. S., Haskins, J., & Stevenson, B. R. (2003). NZO-3 expression causes global changes to actin cytoskeleton in Madin-Darby canine kidney cells: Linking a tight junction protein to Rho GTPases. Mol. Biol. Cell, 14(5), 1757-1768. https://doi.org/10.1091/mbc.e02-08-0486
Chatterjee, S., Seifried, L., Feigin, M. E., Gibbons, D. L., Scuoppo, C., Lin, W., … Muthuswamy, S. K. (2012). Dysregulation of cell polarity proteins synergize with oncogenes or the microenvironment to induce invasive behavior in epithelial cells. PLoS One, 7(4), e34343. https://doi.org/10.1371/journal.pone.0034343
Xu, Y., Chang, R., Peng, Z., Wang, Y., Ji, W., Guo, J., … Zhan, L. (2015). Loss of polarity protein AF6 promotes pancreatic cancer metastasis by inducing Snail expression. Nat. Commun., 6(1), 7184. https://doi.org/10.1038/ncomms8184
Lee, M., & Vasioukhin, V. (2008). Cell polarity and cancer - cell and tissue polarity as a non-canonical tumor suppressor. J. Cell Sci., 121(8), 1141. https://doi.org/10.1242/jcs.016634
Bonucci, M., Kuperwasser, N., Barbe, S., Koka, V., de Villeneuve, D., Zhang, C., … Pende, M. (2020). mTOR and S6K1 drive polycystic kidney by the control of Afadin-dependent oriented cell division. Nat. Commun., 11(1), 3200. https://doi.org/10.1038/s41467-020-16978-z
Li, L., Zhao, G.-D., Shi, Z., Qi, L.-L., Zhou, L.-Y., & Fu, Z.-X. (2016). The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncol. Lett., 12(5), 3045-3050. https://doi.org/10.3892/ol.2016.5110
McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Wong, E. W. T., Chang, F., … Franklin, R. A. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Bioch. Biophys. Acta, 1773(8), 1263-1284. https://doi.org/10.1016/j.bbamcr.2006.10.001
De Luca, A., Maiello, M. R., D'Alessio, A., Pergameno, M., & Normanno, N. (2012). The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: Role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin. Ther. Targets, 16(sup2), S17-S27. https://doi.org/10.1517/14728222.2011.639361
Radziwill, G., Weiss, A., Heinrich, J., Baumgartner, M., Boisguerin, P., Owada, K., & Moelling, K. (2007). Regulation of c-Src by binding to the PDZ domain of AF-6. EMBO J., 26(11), 2633-2644. https://doi.org/10.1038/sj.emboj.7601706
Wheeler, D. L., Iida, M., & Dunn, E. F. (2009). The role of Src in solid tumors. Oncologist, 14(7), 667-678. https://doi.org/10.1634/theoncologist.2009-0009
Saito, S., Sirahama, S., Matsushima, M., Suzuki, M., Sagae, S., Kudo, R., … Nakamura, Y. (1996). Definition of a commonly deleted region in ovarian cancers to a 300-kb segment of chromosome 6q27. Cancer Res., 56(24), 5586. Retrieved from http://cancerres.aacrjournals.org/content/56/24/5586.abstract
Sun, T. T., Wang, Y., Cheng, H., Zhang, X. H., Xiang, J. J., Zhang, J. T., … Chan, H. C. (2014). Disrupted interaction between CFTR and AF-6/afadin aggravates malignant phenotypes of colon cancer. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1843(3), 618-628. https://doi.org/10.1016/j.bbamcr.2013.12.013
Letessier, A., Garrido-Urbani, S., Ginestier, C., Fournier, G., Esterni, B., Monville, F., … Chaffanet, M. (2007). Correlated break at PARK2/FRA6E and loss of AF-6/Afadin protein expression are associated with poor outcome in breast cancer. Oncogene, 26(2), 298-307. https://doi.org/10.1038/sj.onc.1209772
Marques, M. S., Melo, J., Cavadas, B., Mendes, N., Pereira, L., Carneiro, F., … Leite, M. (2018). Afadin downregulation by helicobacter pylori induces epithelial to mesenchymal transition in gastric cells. Front Microbiol., 9, 2712. https://doi.org/10.3389/fmicb.2018.02712
Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat. Rev. Cancer, 3(5), 362-374. https://doi.org/10.1038/nrc1075
Deschênes-Simard, X., Kottakis, F., Meloche, S., & Ferbeyre, G. (2014). ERKs in cancer: Friends or foes? Cancer Res., 74(2), 412. https://doi.org/10.1158/0008-5472.CAN-13-2381
Tanimura, S., & Takeda, K. (2017). ERK signalling as a regulator of cell motility. J. Biochem., 162(3), 145-154. https://doi.org/10.1093/jb/mvx048
Prasad, R., Gu, Y., Alder, H., Nakamura, T., Canaani, O., Saito, H., … et al. (1993). Cloning of the ALL-1 fusion partner, the AF-6 gene, involved in acute myeloid leukemias with the t(6;11) chromosome translocation. Cancer Res., 53(23), 5624-5628. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8242616
Winters, A. C., & Bernt, K. M. (2017). MLL-rearranged leukemias-an update on science and clinical approaches. Front. Pediatr., 5(4),. https://doi.org/10.3389/fped.2017.00004
Cosgrove, M. S., & Patel, A. (2010). Mixed lineage leukemia: A structure-function perspective of the MLL1 protein. FEBS J., 277(8), 1832-1842. https://doi.org/10.1111/j.1742-4658.2010.07609.x
Joh, T., Yamamoto, K., Kagami, Y., Kakuda, H., Sato, T., Yamamoto, T., … Seto, M. (1997). Chimeric MLL products with a Ras binding cytoplasmic protein AF6 involved in t(6;11) (q27;q23) leukemia localize in the nucleus. Oncogene, 15(14), 1681-1687. https://doi.org/10.1038/sj.onc.1201332
Dobson, C. L., Warren, A. J., Pannell, R., Forster, A., & Rabbitts, T. H. (2000). Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J., 19(5), 843-851. https://doi.org/10.1093/emboj/19.5.843
So, C. W., Lin, M., Ayton, P. M., Chen, E. H., & Cleary, M. L. (2003). Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell, 4(2), 99-110. https://doi.org/10.1016/S1535-6108(03)00188-0
Deshpande, A. J., Chen, L., Fazio, M., Sinha, A. U., Bernt, K. M., Banka, D., … Armstrong, S. A. (2013). Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l. Blood, 121(13), 2533-2541. https://doi.org/10.1182/blood-2012-11-465120
Begay-Muller, V., Ansieau, S., & Leutz, A. (2002). The LIM domain protein Lmo2 binds to AF6, a translocation partner of the MLL oncogene. FEBS Lett., 521(1-3), 36-38. https://doi.org/10.1016/s0014-5793(02)02814-4
Charpin, C., Tavassoli, F., Secq, V., Giusiano, S., Villeret, J., Garcia, S., … Iovanna, J. (2012). Validation of an immunohistochemical signature predictive of 8-year outcome for patients with breast carcinoma. Int. J. Cancer, 131(3), E236-E243. https://doi.org/10.1002/ijc.27371
Tabariès, S., Dong, Z., Annis, M. G., Omeroglu, A., Pepin, F., Ouellet, V., … Siegel, P. M. (2011). Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene, 30(11), 1318-1328. https://doi.org/10.1038/onc.2010.518
Tabariès, S., Dupuy, F., Dong, Z., Monast, A., Annis, M. G., Spicer, J., … Siegel, P. M. (2012). Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes. Mol. Cell. Biol., 32(15), 2979-2991. https://doi.org/10.1128/MCB.00299-12
Elloul, S., Kedrin, D., Knoblauch, N. W., Beck, A. H., & Toker, A. (2014). The adherens junction protein afadin is an AKT substrate that regulates breast cancer cell migration. Mol. Cancer Res., 12(3), 464-476. https://doi.org/10.1158/1541-7786.MCR-13-0398
Zhai, X., Li, Y., Liang, P., Li, L., Zhou, Y., Zhang, W., … Wei, G. (2018). PI3K/AKT/Afadin signaling pathway contributes to pathological vascularization in glioblastomas. Oncol. Lett., 15(2), 1893-1899. https://doi.org/10.3892/ol.2017.7461
Labernadie, A., Kato, T., Brugués, A., Serra-Picamal, X., Derzsi, S., Arwert, E., … Trepat, X. (2017). A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol., 19(3), 224-237. https://doi.org/10.1038/ncb3478
Yang, M., Li, Y., Ruan, Y., Lu, Y., Lin, D., Xie, Y., … Quan, C. (2018). CLDN6 enhances chemoresistance to ADM via AF-6/ERKs pathway in TNBC cell line MDAMB231. Mol. Cell. Biochem., 443(1-2), 169-180. https://doi.org/10.1007/s11010-017-3221-8
Tate, J. G., Bamford, S., Jubb, H. C., Sondka, Z., Beare, D. M., Bindal, N., … Forbes, S. A. (2019). COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res., 47(D1), D941-D947. https://doi.org/10.1093/nar/gky1015
COSMIC. (2020). Catalogue of Somatic Mutations in Cancer. cancer. sanger.ac.uk
Yamamoto, T., Harada, N., Kano, K., Taya, S., Canaani, E., Matsuura, Y., … Kaibuchi, K. (1997). The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J. Cell Biol., 139(3), 785-795. https://doi.org/10.1083/jcb.139.3.785
Popovic, M., Bella, J., Zlatev, V., Hodnik, V., Anderluh, G., Barlow, P. N., … Pongor, S. (2011). The interaction of Jagged-1 cytoplasmic tail with afadin PDZ domain is local, folding-independent, and tuned by phosphorylation. J. Mol. Recognit., 24(2), 245-253. https://doi.org/10.1002/jmr.1042
Halford, M. M., Armes, J., Buchert, M., Meskenaite, V., Grail, D., Hibbs, M. L., … Stacker, S. A. (2000). Ryk-deficient mice exhibit craniofacial defects associated with perturbed Eph receptor crosstalk. Nat. Genet., 25(4), 414-418. https://doi.org/10.1038/78099
Rehm, K., Panzer, L., van Vliet, V., Genot, E., & Linder, S. (2013). Drebrin preserves endothelial integrity by stabilizing nectin at adherens junctions. J. Cell Sci., 126(Pt 16), 3756-3769. https://doi.org/10.1242/jcs.129437
Shao, H., Kadono-Okuda, K., Finlin, B. S., & Andres, D. A. (1999). Biochemical characterization of the Ras-related GTPases Rit and Rin. Arch. Biochem. Biophys., 371(2), 207-219. https://doi.org/10.1006/abbi.1999.1448
Tagashira, T., Fukuda, T., Miyata, M., Nakamura, K., Fujita, H., Takai, Y., … Rikitake, Y. (2018). Afadin facilitates vascular endothelial growth factor-induced network formation and migration of vascular endothelial cells by inactivating Rho-associated kinase through ArhGAP29. Arterioscler., Thromb., Vasc. Biol., 38(5), 1159-1169. https://doi.org/10.1161/ATVBAHA.118.310991
Carminati, M., Gallini, S., Pirovano, L., Alfieri, A., Bisi, S., & Mapelli, M. (2016). Concomitant binding of Afadin to LGN and F-actin directs planar spindle orientation. Nat. Struct. Mol. Biol., 23(2), 155-163. https://doi.org/10.1038/nsmb.3152
Perez White, B. E., Ventrella, R., Kaplan, N., Cable, C. J., Thomas, P. M., & Getsios, S. (2017). EphA2 proteomics in human keratinocytes reveals a novel association with afadin and epidermal tight junctions. J. Cell Sci., 130(1), 111-118. https://doi.org/10.1242/jcs.188169
Monteiro, A. C., Sumagin, R., Rankin, C. R., Leoni, G., Mina, M. J., Reiter, D. M., … Parkos, C. A. (2013). JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function. Mol. Biol. Cell, 24(18), 2849-2860. https://doi.org/10.1091/mbc.E13-06-0298
Shah, J., Rouaud, F., Guerrera, D., Vasileva, E., Popov, L. M., Kelley, W. L., … Citi, S. (2018). A Dock-and-Lock mechanism clusters ADAM10 at cell-cell junctions to promote alpha-toxin cytotoxicity. Cell Rep., 25(8), 2132-2147.e7. https://doi.org/10.1016/j.celrep.2018.10.088

Auteurs

Jennifer Huxham (J)

Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.
Department of Medicine, McGill University, Montréal, Québec, Canada.

Sébastien Tabariès (S)

Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.
Department of Medicine, McGill University, Montréal, Québec, Canada.

Peter M Siegel (PM)

Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.
Department of Medicine, McGill University, Montréal, Québec, Canada.
Department of Biochemistry, McGill University, Montréal, Québec, Canada.
Department of Anatomy & Cell Biology, McGill University, Montréal, Québec, Canada.
Department of Oncology, McGill University, Montréal, Québec, Canada.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH