Vagotomy Affects Lipopolysaccharide-Induced Changes of Urocortin 2 Gene Expression in the Brain and on the Periphery.
Adrenal Medulla
/ drug effects
Animals
Corticotropin-Releasing Hormone
/ genetics
Gene Expression
/ drug effects
Lipopolysaccharides
/ pharmacology
Male
Paraventricular Hypothalamic Nucleus
/ metabolism
Proto-Oncogene Proteins c-fos
/ genetics
Rats, Sprague-Dawley
Spleen
/ drug effects
Urocortins
/ genetics
Vagotomy
Vagus Nerve
/ surgery
Adrenal medulla
Corticosterone
Hypothalamus
Lipopolysaccharide
Urocortin 2
Vagus nerve
Journal
Neurochemical research
ISSN: 1573-6903
Titre abrégé: Neurochem Res
Pays: United States
ID NLM: 7613461
Informations de publication
Date de publication:
Feb 2021
Feb 2021
Historique:
received:
22
07
2020
accepted:
31
10
2020
revised:
28
10
2020
pubmed:
11
11
2020
medline:
10
8
2021
entrez:
10
11
2020
Statut:
ppublish
Résumé
The corticotropin-releasing hormone family of peptides is involved in regulating the neuroendocrine stress response. Also, the vagus nerve plays an important role in the transmission of immune system-related signals to brain structures, thereby orchestrating the neuroendocrine stress response. Therefore, we investigated gene expression of urocortin 2 (Ucn2) and c-fos, a markers of neuronal activity, within the hypothalamic paraventricular nucleus (PVN), a brain structure involved in neuroendocrine and neuroimmune responses, as well as in the adrenal medulla and spleen in vagotomized rats exposed to immune challenge. In addition, markers of neuroendocrine stress response activity were investigated in the adrenal medulla, spleen, and plasma. Intraperitoneal administration of lipopolysaccharide (LPS) induced a significant increase of c-fos and Ucn2 gene expression in the PVN, and adrenal medulla as well as increases of plasma corticosterone levels. In addition, LPS administration induced a significant increase in the gene expression of tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) in the adrenal medulla. In the spleen, LPS administration increased gene expression of c-fos, while gene expression of TH and PNMT was significantly reduced, and gene expression of Ucn2 was not affected. Subdiaphragmatic vagotomy significantly attenuated the LPS-induced increases of gene expression of c-fos and Ucn2 in the PVN and Ucn2 in the adrenal medulla. Our data has shown that Ucn2 may be involved in regulation of the HPA axis in response to immune challenge. In addition, our findings indicate that the effect of immune challenge on gene expression of Ucn2 is mediated by vagal pathways.
Identifiants
pubmed: 33170479
doi: 10.1007/s11064-020-03165-1
pii: 10.1007/s11064-020-03165-1
doi:
Substances chimiques
Lipopolysaccharides
0
Proto-Oncogene Proteins c-fos
0
Urocortins
0
urocortin 3, rat
0
Corticotropin-Releasing Hormone
9015-71-8
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
159-164Subventions
Organisme : Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
ID : 2/0015/19
Organisme : Interreg
ID : V-A SK-AT V014 - NutriAging
Références
Deussing JM, Chen A (2018) The Corticotropin-releasing factor family: physiology of the stress response. Physiol Rev 98:2225–2286
doi: 10.1152/physrev.00042.2017
Tillinger A, Horvathova L, Nostramo R, Serova LI, Kvetnansky R, Sabban EL, Mravec B (2018) Glucocorticoid withdrawal affects stress-induced changes of urocortin 2 gene expression in rat adrenal medulla and brain. J Neuroendocrinol 30:e12595
doi: 10.1111/jne.12595
Tillinger A, Nostramo R, Kvetnansky R, Serova L, Sabban EL (2013) Stress-induced changes in gene expression of urocortin 2 and other CRH peptides in rat adrenal medulla: involvement of glucocorticoids. J Neurochem 125:185–192
doi: 10.1111/jnc.12152
Fekete EM, Zorrilla EP (2007) Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: ancient CRF paralogs. Front Neuroendocrinol 28:1–27
doi: 10.1016/j.yfrne.2006.09.002
Dermitzaki E, Tsatsanis C, Minas V, Chatzaki E, Charalampopoulos I, Venihaki M, Androulidaki A, Lambropoulou M, Spiess J, Michalodimitrakis E, Gravanis A, Margioris AN (2007) Corticotropin-releasing factor (CRF) and the urocortins differentially regulate catecholamine secretion in human and rat adrenals, in a CRF receptor type-specific manner. Endocrinology 148:1524–1538
doi: 10.1210/en.2006-0967
Monteiro-Pinto C, Adao R, Leite-Moreira AF, Bras-Silva C (2019) Cardiovascular effects of Urocortin-2: pathophysiological mechanisms and therapeutic potential. Cardiovasc Drugs Ther 33:599–613
doi: 10.1007/s10557-019-06895-9
Janssen D, Kozicz T (2013) Is it really a matter of simple dualism? Corticotropin-releasing factor receptors in body and mental health. Front Endocrinol (Lausanne) 4:28
doi: 10.3389/fendo.2013.00028
Zhu H, Wang J, Li J, Li S (2011) Corticotropin-releasing factor family and its receptors: pro-inflammatory or anti-inflammatory targets in the periphery? Inflamm Res 60:715–721
doi: 10.1007/s00011-011-0329-2
Goehler LE, Gaykema RP, Hansen MK, Anderson K, Maier SF, Watkins LR (2000) Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton Neurosci 85:49–59
doi: 10.1016/S1566-0702(00)00219-8
Wan W, Janz L, Vriend CY, Sorensen CM, Greenberg AH, Nance DM (1993) Differential induction of c-Fos immunoreactivity in hypothalamus and brain stem nuclei following central and peripheral administration of endotoxin. Brain Res Bull 32:581–587
doi: 10.1016/0361-9230(93)90158-8
Nobel CS, Schultzberg M (1995) Induction of interleukin-1 beta mRNA and enkephalin mRNA in the rat adrenal gland by lipopolysaccharides studied by in situ hybridization histochemistry. Neuroimmunomodulation 2:61–73
doi: 10.1159/000096873
Wan W, Wetmore L, Sorensen CM, Greenberg AH, Nance DM (1994) Neural and biochemical mediators of endotoxin and stress-induced c-fos expression in the rat brain. Brain Res Bull 34:7–14
doi: 10.1016/0361-9230(94)90179-1
Coupland RE, Parker TL, Kesse WK, Mohamed AA (1989) The innervation of the adrenal gland. III. Vagal innervation. J Anat 163:173–181
pubmed: 2606772
pmcid: 1256527
Bassi GS, Kanashiro A, Coimbra NC, Terrando N, Maixner W, Ulloa L (2020) Anatomical and clinical implications of vagal modulation of the spleen. Neurosci Biobehav Rev 112:363–373
doi: 10.1016/j.neubiorev.2020.02.011
Ondicova K, Mravec B (2010) Multilevel interactions between the sympathetic and parasympathetic nervous systems: a minireview. Endocr Regul 44:69–75
doi: 10.4149/endo_2010_02_69
Khasar SG, Green PG, Miao FJ, Levine JD (2003) Vagal modulation of nociception is mediated by adrenomedullary epinephrine in the rat. Eur J Neurosci 17:909–915
doi: 10.1046/j.1460-9568.2003.02503.x
Ondicova K, Tillinger A, Pecenak J, Mravec B (2019) The vagus nerve role in antidepressants action: efferent vagal pathways participate in peripheral anti-inflammatory effect of fluoxetine. Neurochem Int 125:47–56
doi: 10.1016/j.neuint.2019.02.003
Palkovits M, Brownstein MJ (1988) Maps and guide to microdissection of the rat brain. Elsevier Science Publishing Co., New York
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408
doi: 10.1006/meth.2001.1262
Mravec B, Ondicova K, Tillinger A, Pecenak J (2015) Subdiaphragmatic vagotomy enhances stress-induced epinephrine release in rats. Auton Neurosci 190:20–25
doi: 10.1016/j.autneu.2015.04.003
Elenkov IJ, Kovacs K, Kiss J, Bertok L, Vizi ES (1992) Lipopolysaccharide is able to bypass corticotrophin-releasing factor in affecting plasma ACTH and corticosterone levels: evidence from rats with lesions of the paraventricular nucleus. J Endocrinol 133:231–236
doi: 10.1677/joe.0.1330231
Gaykema RP, Dijkstra I, Tilders FJ (1995) Subdiaphragmatic vagotomy suppresses endotoxin-induced activation of hypothalamic corticotropin-releasing hormone neurons and ACTH secretion. Endocrinology 136:4717–4720
doi: 10.1210/endo.136.10.7664696
Kapcala LP, He JR, Gao Y, Pieper JO, DeTolla LJ (1996) Subdiaphragmatic vagotomy inhibits intra-abdominal interleukin-1 beta stimulation of adrenocorticotropin secretion. Brain Res 728:247–254
doi: 10.1016/0006-8993(96)00511-2
Wang X, Wang BR, Zhang XJ, Duan XL, Guo X, Ju G (2004) Fos expression in the rat brain after intraperitoneal injection of Staphylococcus enterotoxin B and the effect of vagotomy. Neurochem Res 29:1667–1674
doi: 10.1023/B:NERE.0000035801.81825.2a
Goehler LE, Gaykema RP, Hammack SE, Maier SF, Watkins LR (1998) Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve. Brain Res 804:306–310
doi: 10.1016/S0006-8993(98)00685-4
Maruyama H, Makino S, Noguchi T, Nishioka T, Hashimoto K (2007) Central type 2 corticotropin-releasing hormone receptor mediates hypothalamic-pituitary-adrenocortical axis activation in the rat. Neuroendocrinology 86:1–16
doi: 10.1159/000103556