Detection of Simulated Tactile Gratings by Electro-Static Friction Show a Dependency on Bar Width for Blind and Sighted Observers, and Preliminary Neural Correlates in Sighted Observers.
blind and sighted participants
fMRI
haptic-feedback technology
somatosensory brain network
tactile perception
Journal
Frontiers in neuroscience
ISSN: 1662-4548
Titre abrégé: Front Neurosci
Pays: Switzerland
ID NLM: 101478481
Informations de publication
Date de publication:
2020
2020
Historique:
received:
01
04
2020
accepted:
22
09
2020
entrez:
12
11
2020
pubmed:
13
11
2020
medline:
13
11
2020
Statut:
epublish
Résumé
The three-dimensional micro-structure of physical surfaces produces frictional forces that provide sensory cues about properties of felt surfaces such as roughness. This tactile information activates somatosensory cortices, and frontal and temporal brain regions. Recent advances in haptic-feedback technologies allow the simulation of surface micro-structures via electro-static friction to produce touch sensations on otherwise flat screens. These sensations may benefit those with visual impairment or blindness. The primary aim of the current study was to test blind and sighted participants' perceptual sensitivity to simulated tactile gratings. A secondary aim was to explore which brain regions were involved in simulated touch to further understand the somatosensory brain network for touch. We used a haptic-feedback touchscreen which simulated tactile gratings using digitally manipulated electro-static friction. In Experiment 1, we compared blind and sighted participants' ability to detect the gratings by touch alone as a function of their spatial frequency (bar width) and intensity. Both blind and sighted participants showed high sensitivity to detect simulated tactile gratings, and their tactile sensitivity functions showed both linear and quadratic dependency on spatial frequency. In Experiment 2, using functional magnetic resonance imaging, we conducted a preliminary investigation to explore whether brain activation to physical vibrations correlated with blindfolded (but sighted) participants' performance with simulated tactile gratings outside the scanner. At the neural level, blindfolded (but sighted) participants' detection performance correlated with brain activation in bi-lateral supplementary motor cortex, left frontal cortex and right occipital cortex. Taken together with previous studies, these results suggest that there are similar perceptual and neural mechanisms for real and simulated touch sensations.
Identifiants
pubmed: 33177973
doi: 10.3389/fnins.2020.548030
pmc: PMC7591789
doi:
Types de publication
Journal Article
Langues
eng
Pagination
548030Informations de copyright
Copyright © 2020 Vuong, Shaaban, Black, Smith, Nassar, Abozied, Degenaar and Al-Atabany.
Références
PLoS One. 2015 Jun 11;10(6):e0129777
pubmed: 26067832
J Neurosci. 2011 Nov 30;31(48):17603-11
pubmed: 22131421
Hum Brain Mapp. 2008 Feb;29(2):207-21
pubmed: 17390318
Exp Brain Res. 2008 Jul;188(3):331-40
pubmed: 18443774
J Neurophysiol. 2010 Jun;103(6):3115-22
pubmed: 20457848
Biomed Res Int. 2013;2013:734326
pubmed: 23936840
Brain Res. 2006 Jan 12;1068(1):205-12
pubmed: 16364261
Neuroscience. 1990;37(1):245-9
pubmed: 2243596
Percept Psychophys. 1989 Jan;45(1):49-54
pubmed: 2913570
J Neurophysiol. 2016 Oct 1;116(4):1795-1806
pubmed: 27440247
J Neurophysiol. 2017 Oct 1;118(4):2371-2377
pubmed: 28724777
J Physiol. 1978 Aug;281:101-25
pubmed: 702358
Front Neurol. 2019 Apr 04;10:325
pubmed: 31019487
Hum Brain Mapp. 2011 Jul;32(7):1067-80
pubmed: 20669167
J Neurophysiol. 1981 Dec;46(6):1177-92
pubmed: 7320742
Brain Res. 2001 Apr 6;897(1-2):188-92
pubmed: 11282375
Sci Rep. 2019 Jan 11;9(1):77
pubmed: 30635598
BMC Neurosci. 2007 Jul 04;8:48
pubmed: 17610721
Neurology. 2000 Jun 27;54(12):2230-6
pubmed: 10881245
Hum Brain Mapp. 2013 Nov;34(11):2767-74
pubmed: 22611041
J Neurophysiol. 2007 Jan;97(1):264-71
pubmed: 17065253
Front Psychol. 2019 Jul 26;10:1470
pubmed: 31402879
Elife. 2016 Mar 15;5:e10762
pubmed: 26976813
Percept Psychophys. 2002 Oct;64(7):1095-107
pubmed: 12489664
Nat Neurosci. 2001 Mar;4(3):324-30
pubmed: 11224551
Percept Psychophys. 2006 Nov;68(8):1363-71
pubmed: 17378422
J Neurol Neurosurg Psychiatry. 1993 Apr;56(4):329-33
pubmed: 8482950
J Neurosci. 2011 Nov 16;31(46):16556-60
pubmed: 22090482
J Physiol. 1979 Dec;297(0):405-22
pubmed: 536918
IEEE Trans Biomed Eng. 1991 Jan;38(1):1-16
pubmed: 2026426
J Cogn Neurosci. 2012 Oct;24(10):2120-34
pubmed: 22721377
Hum Brain Mapp. 2001 Nov;14(3):186-95
pubmed: 11559962
Percept Psychophys. 2000 Feb;62(2):301-12
pubmed: 10723209
Hum Brain Mapp. 2015 Sep;36(9):3339-50
pubmed: 26095426
Ann Neurol. 1999 Apr;45(4):451-60
pubmed: 10211469
IEEE Trans Haptics. 2016 Oct-Dec;9(4):455-464
pubmed: 27479977
Spat Vis. 1997;10(4):437-42
pubmed: 9176953
J Neurosci. 2001 Jul 15;21(14):5289-96
pubmed: 11438604
J R Soc Interface. 2017 Dec;14(137):
pubmed: 29212757
J Neurophysiol. 1972 Jan;35(1):122-36
pubmed: 4621505
J Vis. 2008 Dec 17;8(10):13.1-19
pubmed: 19146355
J Neurosci. 1992 Sep;12(9):3414-26
pubmed: 1527586
Neuropsychologia. 2009 Aug;47(10):2037-43
pubmed: 19467354
Hum Brain Mapp. 2004 Dec;23(4):210-28
pubmed: 15449356
Brain Res Cogn Brain Res. 2004 Aug;20(3):491-509
pubmed: 15268926
J Neurosci. 2003 Apr 15;23(8):3439-45
pubmed: 12716952
Brain Res. 2013 Apr 4;1504:47-57
pubmed: 23399687
J Neurosci. 2017 Nov 29;37(48):11572-11591
pubmed: 29066555
J Neurosci. 1990 Dec;10(12):3823-36
pubmed: 2269886
Nature. 1996 Apr 11;380(6574):526-8
pubmed: 8606771
Spat Vis. 1997;10(4):433-6
pubmed: 9176952
Exp Brain Res. 2006 Apr;170(2):172-81
pubmed: 16307264
Hum Brain Mapp. 2005 Aug;25(4):370-7
pubmed: 15852384
Cereb Cortex. 2016 Mar;26(3):1295-301
pubmed: 26637451
Hum Brain Mapp. 2017 Mar;38(3):1172-1181
pubmed: 27767240
J Neurophysiol. 1999 Apr;81(4):1548-58
pubmed: 10200190
Hum Brain Mapp. 2010 Nov;31(11):1686-701
pubmed: 20162595