Induction of cytotoxic effector cells towards cholangiocellular, pancreatic, and colorectal tumor cells by activation of the immune checkpoint CD40/CD40L on dendritic cells.
CD40 Antigens
/ genetics
CD40 Ligand
/ genetics
Cell Differentiation
Cell Line, Tumor
Cell Proliferation
Cholangiocarcinoma
/ immunology
Colorectal Neoplasms
/ immunology
Cytokines
/ metabolism
Cytotoxicity, Immunologic
Dendritic Cells
/ immunology
Humans
Immunotherapy
/ methods
Lymphocyte Activation
Pancreatic Neoplasms
/ immunology
Signal Transduction
T-Lymphocytes, Cytotoxic
/ immunology
Th1 Cells
/ immunology
Th1-Th2 Balance
Th2 Cells
/ immunology
Cholangiocarcinoma
Dendritic cells
Hepatocellular carcinoma
Immune checkpoint
Immunotherapy
Pancreatic carcinoma
Journal
Cancer immunology, immunotherapy : CII
ISSN: 1432-0851
Titre abrégé: Cancer Immunol Immunother
Pays: Germany
ID NLM: 8605732
Informations de publication
Date de publication:
May 2021
May 2021
Historique:
received:
21
07
2019
accepted:
12
10
2020
pubmed:
13
11
2020
medline:
5
5
2021
entrez:
12
11
2020
Statut:
ppublish
Résumé
Gastrointestinal (GI) malignancies, such as cholangiocarcinoma, pancreatic carcinoma, and metastatic colorectal carcinoma, have a poor prognosis and effective therapeutic approaches are still challenging. Checkpoint inhibition with PD-1 or PDL-1 antibodies revealed promising results in different tumor entities; however, only few patients with GI tumors can potentially benefit from PD1/PDL1 inhibiting immunotherapy. Further immunotherapeutic strategies for GI malignancies are urgently needed. The aim of this study was to demonstrate that in vitro activation of the immune checkpoint CD40/CD40L can improve DC action towards bile duct, pancreas, and colorectal carcinoma. Human DC were isolated from buffy coats from healthy donors, pulsed with tumor lysates and then transduced with adenoviruses encoding human CD40L (Ad-hCD40L). Using transwell assays, the effects of (m)CD40L on DC immunoactivation compared to (s)CD40L were analyzed. Surface marker and cytokine/chemokine expression were measured by flow cytometry, ELISA and cytokine arrays. Capacity of Ad-hCD40L-transduced DC to induce tumor-specific effector cells was tested using MTT proliferation assay and cytotoxicity assays. Apoptosis induction on tumor cells after culturing with supernatants of Ad-hCD40L-transduced DC was analyzed by flow cytometry. Ad-hCD40L transduction induced a high expression of (s)CD40L and (m)CD40L on DC and seemed to induce a strong cellular CD40/CD40L interaction among DC, leading to the formation of cell aggregates. Due to the CD40/CD40L interaction, a significant upregulation of DC maturation markers and a Th1-shift on cytokines/chemokines in the supernatant of DC were achieved. Interestingly, a pure Th1-shift was only achieved, when a cellular CD40/CD40L interaction among DC took place. (s)CD40L induced almost no upregulation of maturation markers and rather resulted in a Th2-cytokine expression, such as IL-10. Correspondingly, (m)CD40L-expressing DC led to significant proliferation and stimulation of tumor-specific effector cells with increased cytotoxicity towards pancreatic, bile duct and colorectal tumor cells. Supernatants of Ad-hCD40L-transduced DC could also induce apoptosis in the different tumor cells in vitro. Stimulation of the immune checkpoint CD40L/CD40 by endogenous expression of (m)CD40L provokes a cellular interaction, which increases the immunomodulatory capacity of DC. A Th1 cytokine/chemokine expression is induced, leading to a significant proliferation and enabling cytotoxicity of effector cells towards human bile duct, pancreatic and colorectal tumor cells. The present data point to the promising approach for DC-based immunotherapy of gastrointestinal malignances by activating the CD40/CD40L immune checkpoint.
Identifiants
pubmed: 33180184
doi: 10.1007/s00262-020-02746-x
pii: 10.1007/s00262-020-02746-x
pmc: PMC8053193
doi:
Substances chimiques
CD40 Antigens
0
Cytokines
0
CD40 Ligand
147205-72-9
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1451-1464Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : GO 1874/1-2
Organisme : Deutsche Krebshilfe
ID : 109255
Références
Wong MCS, Jiang JY, Liang M, Fang Y, Yeung MS, Sung JJY (2017) Global temporal patterns of pancreatic cancer and association with socioeconomic development. Sci Rep 7:3165
doi: 10.1038/s41598-017-02997-2
Wong MC, Jiang JY, Goggins WB, Liang M, Fang Y, Fung FD et al (2017) International incidence and mortality trends of liver cancer: a global profile. Sci Rep 7:45846
doi: 10.1038/srep45846
Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F (2017) Global patterns and trends in colorectal cancer incidence and mortality. Gut 66:683–691
doi: 10.1136/gutjnl-2015-310912
Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817–1825
doi: 10.1056/NEJMoa1011923
Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M et al (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369:1023–1034
doi: 10.1056/NEJMoa1305275
Heinemann V, Stintzing S (2014) FOLFIRI with cetuximab or bevacizumab: FIRE-3-authors’ reply. Lancet Oncol 15:e583-584
doi: 10.1016/S1470-2045(14)71036-8
Mayer RJ, Van Cutsem E, Falcone A, Yoshino T, Garcia-Carbonero R, Mizunuma N et al (2015) Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med 372:1909–1919
doi: 10.1056/NEJMoa1414325
Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A et al (2010) Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 362:1273–1281
doi: 10.1056/NEJMoa0908721
Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691–1703
doi: 10.1056/NEJMoa1304369
Wang-Gillam A, Li CP, Bodoky G, Dean A, Shan YS, Jameson G et al (2016) Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet 387:545–557
doi: 10.1016/S0140-6736(15)00986-1
Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465
doi: 10.1056/NEJMoa1200694
Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US et al (2010) Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 33:828–833
doi: 10.1097/CJI.0b013e3181eec14c
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520
doi: 10.1056/NEJMoa1500596
Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–413
doi: 10.1126/science.aan6733
Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA et al (2017) Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 18:1182–1191
doi: 10.1016/S1470-2045(17)30422-9
Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252
doi: 10.1038/32588
Palucka K, Ueno H, Roberts L, Fay J, Banchereau J (2011) Dendritic cell subsets as vectors and targets for improved cancer therapy. Curr Top Microbiol Immunol 344:173–192
pubmed: 20490776
pmcid: 2944902
Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T et al (2012) Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity. J Intern Med 271:183–192
doi: 10.1111/j.1365-2796.2011.02496.x
Zumwalt TJ, Goel A (2015) Immunotherapy of metastatic colorectal cancer: prevailing challenges and new perspectives. Curr Colorectal Cancer Rep 11:125–140
doi: 10.1007/s11888-015-0269-2
Bashir B, Snook AE (2018) Immunotherapy regimens for metastatic colorectal carcinomas. Hum Vaccin Immunother 14:250–254
doi: 10.1080/21645515.2017.1397244
Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:480–483
doi: 10.1038/31002
Marigo I, Zilio S, Desantis G, Mlecnik B, Agnellini AHR, Ugel S et al (2016) T cell cancer therapy requires CD40-CD40L activation of tumor necrosis factor and inducible nitric-oxide-synthase-producing dendritic cells. Cancer Cell 30:377–390
doi: 10.1016/j.ccell.2016.08.004
Gonzalez-Carmona MA, Lukacs-Kornek V, Timmerman A, Shabani S, Kornek M, Vogt A et al (2008) CD40ligand-expressing dendritic cells induce regression of hepatocellular carcinoma by activating innate and acquired immunity in vivo. Hepatology 48:157–168
doi: 10.1002/hep.22296
Eriksson E, Moreno R, Milenova I, Liljenfeldt L, Dieterich LC, Christiansson L et al (2017) Activation of myeloid and endothelial cells by CD40L gene therapy supports T-cell expansion and migration into the tumor microenvironment. Gene Ther 24:92–103
doi: 10.1038/gt.2016.80
Fallaux FJ, Kranenburg O, Cramer SJ, Houweling A, Van Ormondt H, Hoeben RC et al (1996) Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum Gene Ther 7:215–222
doi: 10.1089/hum.1996.7.2-215
Knuth A, Gabbert H, Dippold W, Klein O, Sachsse W, Bitter-Suermann D et al (1985) Biliary adenocarcinoma. Characterisation of three new human tumor cell lines. J Hepatol 1:579–596
doi: 10.1016/S0168-8278(85)80002-7
Gonzalez-Carmona MA, Marten A, Hoffmann P, Schneider C, Sievers E, Schmidt-Wolf IG et al (2006) Patient-derived dendritic cells transduced with an a-fetoprotein-encoding adenovirus and co-cultured with autologous cytokine-induced lymphocytes induce a specific and strong immune response against hepatocellular carcinoma cells. Liver Int 26:369–379
doi: 10.1111/j.1478-3231.2005.01235.x
Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN (2014) Clinical use of dendritic cells for cancer therapy. Lancet Oncol 15:e257-267
doi: 10.1016/S1470-2045(13)70585-0
Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P, Ferrone S (2012) Immunotherapy of cancer in 2012. CA Cancer J Clin 62:309–335
doi: 10.3322/caac.20132
Hu S, Li B, Shen X, Zhang R, Gao D, Guo Q et al (2016) Induction of antigen-specific cytotoxic T-cell response by dendritic cells generated from ecto-mesenchymal stem cells infected with an adenovirus containing the MAGE-D4a gene. Oncol Lett 11:2886–2892
doi: 10.3892/ol.2016.4306
Zafar S, Parviainen S, Siurala M, Hemminki O, Havunen R, Tahtinen S et al (2017) Intravenously usable fully serotype 3 oncolytic adenovirus coding for CD40L as an enabler of dendritic cell therapy. Oncoimmunology 6:e1265717
doi: 10.1080/2162402X.2016.1265717
Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265–277
doi: 10.1038/nrc3258
Pen JJ, De Keersmaecker B, Maenhout SK, Van Nuffel AM, Heirman C, Corthals J et al (2013) Modulation of regulatory T cell function by monocyte-derived dendritic cells matured through electroporation with mRNA encoding CD40 ligand, constitutively active TLR4, and CD70. J Immunol 191:1976–1983
doi: 10.4049/jimmunol.1201008
Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W et al (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331:1612–1616
doi: 10.1126/science.1198443
Vonderheide RH, Dutcher JP, Anderson JE, Eckhardt SG, Stephans KF, Razvillas B et al (2001) Phase I study of recombinant human CD40 ligand in cancer patients. J Clin Oncol 19:3280–3287
doi: 10.1200/JCO.2001.19.13.3280
Angelou A, Antoniou E, Garmpis N, Damaskos C, Theocharis S, Margonis GA (2018) The role of soluble CD40L ligand in human carcinogenesis. Anticancer Res 38:3199–3201
doi: 10.21873/anticanres.12616