Corneal Stroma Regeneration: New Approach for the Treatment of Cornea Disease.
Journal
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.)
ISSN: 2162-0989
Titre abrégé: Asia Pac J Ophthalmol (Phila)
Pays: China
ID NLM: 101583622
Informations de publication
Date de publication:
Dec 2020
Dec 2020
Historique:
pubmed:
13
11
2020
medline:
11
8
2021
entrez:
12
11
2020
Statut:
ppublish
Résumé
Corneal grafting is one of the most common forms of human tissue transplantation. The corneal stroma is responsible for many characteristics of the cornea. For these reasons, an important volume of research has been made to replicate the corneal stroma in the laboratory to find an alternative to classical corneal transplantation techniques.There is an increasing interest today in cell therapy of the corneal stroma using induced pluripotent stem cells or mesenchymal stem cells since these cells have shown to be capable of producing new collagen within the host stroma and even to improve its transparency.The first clinical experiment on corneal stroma regeneration in advanced keratoconus cases has been reported and included. Fourteen patients were randomized and enrolled into 3 experimental groups: (1) patients underwent implantation of autologous adipose-derived adult stem cells alone, (2) patients received decellularized donor corneal stroma laminas, and (3) patients received implantation of recellularized donor laminas with adipose-derived adult stem cells. Clinical improvement was detected with all cases in their visual, pachymetric, and topographic parameters of the operated corneas.Other recent studies have used allogenic SMILE implantation lenticule corneal inlays, showing also an improvement in different visual, topographic, and keratometric parameters.In the present report, we try to summarize the available preclinical and clinical evidence about the emerging topic of corneal stroma regeneration.
Identifiants
pubmed: 33181549
doi: 10.1097/APO.0000000000000337
pii: 01599573-202012000-00013
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
571-579Références
Griffith M, Alarcon EI, Brunette I. Regenerative approaches for the cornea. J Intern Med 2016; 280:276–286.
Fagerholm P, Lagali N, Merrett K, et al. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med 2010; 2:46ra61doi:10.1126/scitranslmed.3001022.
doi: 10.1126/scitranslmed.3001022
Gain P, Jullienne R, He Z, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol 2016; 134:167–173.
Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent. Exp Eye Res 2018; 173:188–193.
Ruberti J, Zieske J. Prelude to corneal tissue engineering—gaining control of collagen organization. Prog Retin Eye Res 2008; 27:549–577.
Alió JL, Piñero DP, Alesón A, et al. Keratoconus-integrated characterization considering anterior corneal aberrations, internal astigmatism, and corneal biomechanics. J Cataract Refract Surg 2011; 37:552–568.
Alió del Barrio JL, Chiesa M, Garagorri N, et al. Acellular human corneal matrix sheets seeded with human adipose-derived mesenchymal stem cells integrate functionally in an experimental animal model. Exp Eye Res 2015; 132:91–100.
Lynch A, Ahearne M. Strategies for developing decellularized corneal scaffolds. Exp Eye Res 2013; 108:42–47.
Hara H, Cooper DKC. Xenotransplantation—the future of corneal transplantation? Cornea 2011; 30:371–378.
De Miguel MP, Casaroli-Marano RP, Nieto-Nicolau N, et al. Frontiers in regenerative medicine for cornea and ocular surface. Frontiers in Stem Cell and Regenerative Medicine Research 2015;1:92–138
Alió del Barrio JL, Arnalich-Montiel F, De Miguel MP, Alió JL. Corneal stroma regeneration (part A): preclinical studies. Exp Eye Res 2020; doi:10.1016/j.exer.2020.108314.
doi: 10.1016/j.exer.2020.108314
Arnalich-Montiel F, Pastor S, Blázquez-Martínez A, et al. Adipose-derived stem cells are a source for cell therapy of the corneal stroma. Stem Cells 2008; 26:570–579.
De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 2012; 12:574–591.
Hendijani F. Explant culture: an advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif 2017; 50:e12334doi:10.1111/cpr.12334.
doi: 10.1111/cpr.12334
Alió JL, El Zarif M, Alió del Barrio JL. Cellular therapy of the corneal stroma: a new type of corneal surgery for keratoconus and corneal dystrophies a translational research experience. 1st ed.Amsterdam, The Netherlands: Elsevier; 2020.
Yun Y, Park S, Lee H, et al. Comparison of the anti-inflammatory effects of induced pluripotent stem cell–derived and bone marrow–derived mesenchymal stromal cells in a murine model of corneal injury. Cytotherapy 2017; 19:28–35.
Naylor RW, Charles NJM, Cowan CA, Davidson AJ, Holm TM, Sherwin T. Derivation of corneal keratocyte–like cells from human induced pluripotent stem cells. PLoS One 2016; 11:e0165464doi:10.1371/journal.pone.0165464.
doi: 10.1371/journal.pone.0165464
Alió del Barrio JL, El Zarif M, De Miguel MP, et al. Cellular therapy with human autologous adipose-derived adult stem cells for advanced keratoconus. Cornea 2017; 36:952–960.
Espandar L, Bunnell B, Wang G, Gregory P, McBride C, Moshirfar M. Adipose-derived stem cells on hyaluronic acid–derived scaffold: a new horizon in bioengineered cornea. Arch Ophthalmol 2012; 130:202–208.
Alió del Barrio JL, Chiesa M, Ferrer GG, et al. Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experimental animal model. Adv Sci 2015; 103:1106–1118.
Alió del Barrio JL, Alió JL. Cellular therapy of the corneal stroma: a new type of corneal surgery for keratoconus and corneal dystrophies. Eye Vis 2018; 5:28doi:10.1186/s40662-018-0122-1.
doi: 10.1186/s40662-018-0122-1
Alió del Barrio JL, El Zarif M, Azaar A, et al. Corneal stroma enhancement with decellularized stromal laminas with or without stem cell recellularization for advanced keratoconus. Am J Ophthalmol 2018; 186:47–58.
Alió JL, Alió del Barrio JL, El Zarif M, et al. Regenerative surgery of the corneal stroma for advanced keratoconus: 1-year outcomes. Am J Ophthalmol 2019; 203:53–68.
Calderón-Colón X, Zhiyong X, Breidenich JL, et al. Structure and properties of collagen vitrigel membranes for ocular repair and regeneration applications. Biomaterials 2012; 33:8286–8295.
Liu Y, Gan L, Carlsson DJ, et al. A simple, cross-linked collagen tissue substitute for corneal implantation. Invest Ophthalmol Vis Sci 2006; 47:1869–1875.
Merrett K, Fagerholm P, McLaughlin CR, et al. Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen. Cornea 2008; 49:3887–3894.
Liu R, Zhao J, Xu Y, et al. Femtosecond laser–assisted corneal small incision allogenic intrastromal lenticule implantation in monkeys: a pilot study. Invest Opthalmol Vis Sci 2015; 56:3715–3720.
Zhao J, Liu R, Shen Y, et al. Two-year observation of morphologic and histopathologic changes in the monkey cornea following small incision allogenic lenticule implantation. Exp Eye Res 2020; 192:107935.
Zhao J, Shen Y, Tian M, et al. Corneal lenticule allotransplantation after femtosecond laser small incision lenticule extraction in rabbits. Cornea 2017; 36:222–228.
Harkin D, Foyn L, Bray L, Sutherland A, Li F, Cronin B. Concise reviews: can mesenchymal stromal cells differentiate into corneal cells? A systematic review of published data. Stem Cells 2015; 33:785–791.
Du Y, Carlson E, Funderburgh M, et al. Stem cell therapy restores transparency to defective murine corneas. Stem Cells 2009; 27:1635–1642.
Liu H, Zhang J, Liu CY, et al. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice. PLoS One 2010; 5:e10707doi:10.1371/journal.pone.0010707.
doi: 10.1371/journal.pone.0010707
Coulson-Thomas VJ, Caterson B, Kao W. Transplantation of human umbilical mesenchymal stem cells cures the corneal defects of mucopolysaccharidosis VII mice. Stem Cells 2013; 31:2116–2126.
El Zarif M, Alió JL, Alió del Barrio JL, et al. Corneal stromal regeneration therapy for advanced keratoconus: long-term outcomes at 3 years. Cornea 2020.
Caplan AI. Mesenchymal stem cells: time to change the name!. Stem Cells Transl Med 2017; 6:1445–1451.
Yao L, Bai H. Review: mesenchymal stem cells and corneal reconstruction. Mol Vis 2013; 19:2237–2243.
Jiang Z, Liu G, Meng F, et al. Paracrine effects of mesenchymal stem cells on the activation of keratocytes. Br J Ophthalmol 2017; 101:1583–1590.
Funderburgh JL, Funderburgh ML, Mann M, Khandaker I, Shojaati G. Assessing the potential of stem cells to regenerate stromal tissue. Investig Ophthalmol Vis Sci 2017; 58:1425.
Shojaati G, Khandaker I, Funderburgh ML, et al. Mesenchymal stem cells reduce corneal fibrosis and inflammation via extracellular vesicle–mediated delivery of miRNA. Stem Cells Transl Med 2019; 8:1192–1201.
Riau AK, Angunawela RI, Chaurasia SS, Lee WS, Tan DT, Mehta JS. Reversible femtosecond laser–assisted myopia correction: a nonhuman primate study of lenticule reimplantation after refractive lenticule extraction. PLoS One 2013; 8:e67058doi:10.1371/journal.pone.0067058.
doi: 10.1371/journal.pone.0067058
Angunawela RI, Riau AK, Chaurasia SS, Tan DT, Mehta JS. Refractive lenticule reimplantation after myopic ReLEx: a feasibility study of stromal restoration after refractive surgery in a rabbit model. Investig Ophthalmol Vis Sci 2012; 53:4975–4985.
Jacob S, Kumar DA, Agarwal A, Agarwal A, Aravind R, Saijimol AI. Preliminary evidence of successful near vision enhancement with a new technique: PrEsbyopic allogenic refractive lenticule (PEARL) corneal inlay using a SMILE lenticule. J Refract Surg 2017; 33:224–229.
Mastropasqua L, Nubile M. Corneal thickening and central flattening induced by femtosecond laser hyperopic-shaped intrastromal lenticule implantation. Int Ophthalmol 2017; 37:893–904.
Mastropasqua L, Nubile M, Salgari N, Mastropasqua R. Femtosecond laser–assisted stromal lenticule addition keratoplasty for the treatment of advanced keratoconus: a preliminary study. J Refract Surg 2018; 34:36–44.
Pradhan KR, Reinstein DZ, Vida RS, et al. Femtosecond laser–assisted small incision sutureless intrastromal lamellar keratoplasty (SILK) for corneal transplantation in keratoconus. J Refract Surg 2019; 35:663–671.
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7:211–228.
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13:4279–4295.
Guthoff R, Klink T, Schlunck G, Grehn F. Die sickerkissenuntersuchung mittels konfokaler in-vivo mikroskopie mit dem rostocker cornea modul—erste erfahrungen. Klin Monatsbl Augenheilkd 2005; 222:R8doi:10.1055/s-2005-922279.
doi: 10.1055/s-2005-922279
El Zarif M, Abdul Jawad K, Alió del Barrio JL, et al. Corneal stroma cell density evolution in keratoconus corneas following the implantation of adipose mesenchymal stem cells and corneal laminas: an in vivo confocal microscopy study. Invest Opthalmol Vis Sci 2020; 61:22doi:10.1167/iovs.61.4.22.
doi: 10.1167/iovs.61.4.22