Body Anthropometry and Bone Strength Conjointly Determine the Risk of Hip Fracture in a Sideways Fall.
Femur
Fracture mechanics
High-speed testing
Sideways fall
Strain analysis
Journal
Annals of biomedical engineering
ISSN: 1573-9686
Titre abrégé: Ann Biomed Eng
Pays: United States
ID NLM: 0361512
Informations de publication
Date de publication:
May 2021
May 2021
Historique:
received:
13
06
2020
accepted:
26
10
2020
pubmed:
14
11
2020
medline:
6
11
2021
entrez:
13
11
2020
Statut:
ppublish
Résumé
We hypothesize that variations of body anthropometry, conjointly with the bone strength, determine the risk of hip fracture. To test the hypothesis, we compared, in a simulated sideways fall, the hip impact energy to the energy needed to fracture the femur. Ten femurs from elderly donors were tested using a novel drop-tower protocol for replicating the hip fracture dynamics during a fall on the side. The impact energy was varied for each femur according to the donor's body weight, height and soft-tissue thickness, by adjusting the drop height and mass. The fracture pattern, force, energy, strain in the superior femoral neck, bone morphology and microarchitecture were evaluated. Fracture patterns were consistent with clinically relevant hip fractures, and the superior neck strains and timings were comparable with the literature. The hip impact energy (11 - 95 J) and the fracture energy (11 - 39 J) ranges overlapped and showed comparable variance (CV = 69 and 61%, respectively). The aBMD-based definition of osteoporosis correctly classified 7 (70%) fracture/non-fracture cases. The incorrectly classified cases presented large impact energy variations, morphology variations and large subcortical voids as seen in microcomputed tomography. In conclusion, the risk of osteoporotic hip fracture in a sideways fall depends on both body anthropometry and bone strength.
Identifiants
pubmed: 33184710
doi: 10.1007/s10439-020-02682-y
pii: 10.1007/s10439-020-02682-y
pmc: PMC8058010
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1380-1390Subventions
Organisme : Australian Research Council
ID : DP180103146
Organisme : Australian Research Council
ID : FT180100338
Organisme : Università di Bologna
ID : Marco Polo grant
Organisme : Flinders University
ID : Collaborative Grants Visiting Research Scheme
Références
Askarinejad, S., J. E. Johnson, N. Rahbar, and K. L. Troy. Effects of loading rate on the of mechanical behavior of the femur in falling condition. J. Mech. Behav. Biomed. Mater. 96:269–278, 2019.
pubmed: 31075748
Augat, P., and S. Schorlemmer. The role of cortical bone and its microstructure in bone strength. Age Ageing 35:ii27–ii31, 2006.
pubmed: 16926200
Bauer, J. S., T. D. Henning, D. Müeller, Y. Lu, S. Majumdar, and T. M. Link. Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: conversion factors. Am. J. Roentgenol. 188:1294–1301, 2007.
Bhan, S., I. C. Levine, and A. C. Laing. Energy absorption during impact on the proximal femur is affected by body mass index and flooring surface. J. Biomech. 47:2391–2397, 2014.
pubmed: 24837217
Bhattacharya, P., Z. Altai, M. Qasim, and M. Viceconti. A multiscale model to predict current absolute risk of femoral fracture in a postmenopausal population. Biomech. Model. Mechanobiol. 18:301–318, 2019.
pubmed: 30276488
Blume, S. W., and J. R. Curtis. Medical costs of osteoporosis in the elderly Medicare population. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 22:1835–1844, 2011.
Bouxsein, M. L., P. Szulc, F. Munoz, E. Thrall, E. Sornay-Rendu, and P. D. Delmas. Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk. J. Bone Miner. Res. 22:825–831, 2007.
pubmed: 17352651
Chen, S. J., Y. J. Chen, C. H. Cheng, H. F. Hwang, C. Y. Chen, and M. R. Lin. Comparisons of different screening tools for identifying fracture/osteoporosis risk among community-dwelling older people. Med. U. S. 95:1–10, 2016.
Cheung, A. M., and A. S. Detsky. Osteoporosis and fractures: missing the bridge? JAMA 299:1468, 2008.
pubmed: 18364489
Choi, W. J., P. A. Cripton, and S. N. Robinovitch. Effects of hip abductor muscle forces and knee boundary conditions on femoral neck stresses during simulated falls. Osteoporos. Int. 26:291–301, 2015.
pubmed: 25027112
Cosman, F., S. J. de Beur, M. S. LeBoff, E. M. Lewiecki, B. Tanner, S. Randall, and R. Lindsay. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos. Int. 25:2359–2381, 2014.
pubmed: 25182228
pmcid: 4176573
Dall’Ara, E., B. Luisier, R. Schmidt, F. Kainberger, P. Zysset, and D. Pahr. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone 52:27–38, 2013.
pubmed: 22985891
de Bakker, P. M., S. L. Manske, V. Ebacher, T. R. Oxland, P. A. Cripton, and P. Guy. During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures. J. Biomech. 42:1917–1925, 2009.
pubmed: 19524929
De Laet, C., J. A. Kanis, A. Odén, H. Johanson, O. Johnell, P. Delmas, J. A. Eisman, H. Kroger, S. Fujiwara, P. Garnero, E. V. McCloskey, D. Mellstrom, L. J. Melton, P. J. Meunier, H. A. P. Pols, J. Reeve, A. Silman, and A. Tenenhouse. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos. Int. 16:1330–1338, 2005.
pubmed: 15928804
Ferris, B. D., C. Kennedy, M. Bhamra, and W. Muirhead-Allwood. Morphology of the femur in proximal femoral fractures. J. Bone Jt. Surg. Br. 71-B:475–477, 1989.
Fleps, I., W. S. Enns-Bray, P. Guy, S. J. Ferguson, P. A. Cripton, and B. Helgason. On the internal reaction forces, energy absorption, and fracture in the hip during simulated sideways fall impact. PLoS ONE 13:e0200952, 2018.
pubmed: 30114192
pmcid: 6095517
Fleps, I., A. Fung, P. Guy, S. J. Ferguson, B. Helgason, and P. A. Cripton. Subject-specific ex vivo simulations for hip fracture risk assessment in sideways falls. Bone 125:36–45, 2019.
pubmed: 31071479
Fleps, I., P. Guy, S. J. Ferguson, P. A. Cripton, and B. Helgason. Explicit finite element models accurately predict subject-specific and velocity-dependent kinetics of sideways fall impact. J. Bone Miner. Res. 34:1837–1850, 2019.
pubmed: 31163090
Fleps, I., M. Vuille, A. Melnyk, S. J. Ferguson, P. Guy, B. Helgason, and P. A. Cripton. A novel sideways fall simulator to study hip fractures ex vivo. PLoS ONE 13:e0201096, 2018.
pubmed: 30040858
pmcid: 6057661
George, E. Control System Design Guide. New York: Elsevier, p. 520, 2012.
Gonnelli, S. Obesity and fracture risk. Clin. Cases Miner. Bone Metab. 2014. https://doi.org/10.11138/ccmbm/2014.11.1.009 .
doi: 10.11138/ccmbm/2014.11.1.009
pubmed: 25002873
pmcid: 4064448
Grassi, L., J. Kok, A. Gustafsson, Y. Zheng, S. P. Väänänen, J. S. Jurvelin, and H. Isaksson. Elucidating failure mechanisms in human femurs during a fall to the side using bilateral digital image correlation. J. Biomech. 2020. https://doi.org/10.1016/j.jbiomech.2020.109826 .
doi: 10.1016/j.jbiomech.2020.109826
pubmed: 32517988
Helgason, B., S. Gilchrist, O. Ariza, J. D. Chak, G. Zheng, and R. P. Widmer. Development of a balanced experimental—computational approach to understanding the mechanics of proximal femur fractures. Med. Eng. Phys. 36:793–799, 2014.
pubmed: 24629624
Hernlund, E., A. Svedbom, M. Ivergård, J. Compston, C. Cooper, J. Stenmark, E. V. McCloskey, B. Jönsson, and J. A. Kanis. Osteoporosis in the European Union: Medical management, epidemiology and economic burden: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch. Osteoporos. 8:136, 2013.
pubmed: 24113837
pmcid: 3880487
Järvinen, T. L. N., H. Sievänen, K. M. Khan, A. Heinonen, and P. Kannus. Shifting the focus in fracture prevention from osteoporosis to falls. BMJ 336:124–126, 2008.
pubmed: 18202065
pmcid: 2206310
Kanis, J. A. Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936, 2002.
pubmed: 12057569
Kanis, J. A., D. Black, C. Cooper, P. Dargent, B. Dawson-Hughes, C. De Laet, P. Delmas, J. Eisman, O. Johnell, B. Jonsson, L. Melton, A. Oden, S. Papapoulos, H. Pols, R. Rizzoli, A. Silman, A. Tenenhouse, and on behalf of the International Osteoporosis Foundation and the National Osteoporosis Foundation. A new approach to the development of assessment guidelines for osteoporosis. Osteoporos. Int. 13:527–536, 2002.
pubmed: 12111012
Kanis, J. A., O. Johnell, A. Oden, C. De Laet, B. Jonsson, and A. Dawson. Ten-year risk of osteoporotic fracture and the effect of risk factors on screening strategies. Bone 30:251–258, 2002.
pubmed: 11792594
Kaye, B. The effects of freezing on the mechanical properties of bone. Open Bone J. 4:14–19, 2012.
Keyak, J. H., H. B. Skinner, and J. A. Fleming. Effect of force direction on femoral fracture load for two types of loading conditions. J. Orthop. Res. 19:539–544, 2001.
pubmed: 11518258
Khoo, B. C. C., K. Brown, C. Cann, K. Zhu, S. Henzell, V. Low, S. Gustafsson, R. I. Price, and R. L. Prince. Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos. Int. 20:1539–1545, 2009.
pubmed: 19107384
Laing, A. C., and S. N. Robinovitch. Characterizing the effective stiffness of the pelvis during sideways falls on the hip. J. Biomech. 43:1898–1904, 2010.
pubmed: 20398905
Limaye, A. Drishti: a volume exploration and presentation tool. Proceedings SPIE, 2012. https://doi.org/10.1117/12.935640 .
Lloyd, J. T., D. E. Alley, W. G. Hawkes, M. C. Hochberg, S. R. Waldstein, and D. L. Orwig. Body mass index is positively associated with bone mineral density in US older adults. Arch. Osteoporos. 9:175, 2014.
pubmed: 24664472
Maeda, Y., N. Sugano, M. Saito, and K. Yonenobu. Comparison of femoral morphology and bone mineral density between femoral neck fractures and trochanteric fractures. Clin. Orthop. Relat. Res. 469:884–889, 2011.
pubmed: 20725817
Martelli, S., and E. Perilli. Time-elapsed synchrotron-light microstructural imaging of femoral neck fracture. J. Mech. Behav. Biomed. Mater. 84:265–272, 2018.
pubmed: 29852314
Martelli, S., P. Pivonka, and P. R. Ebeling. Femoral shaft strains during daily activities: implications for atypical femoral fractures. Clin. Biomech. 29:869–876, 2014.
Müller, M. E., S. Nazarian, P. Koch, and J. Schatzker. The Comprehensive Classification of Fractures of Long Bones. New York: Springer, 1990.
Palanca, M., G. Barbanti-Bròdano, and L. Cristofolini. The size of simulated lytic metastases affects the strain distribution on the anterior surface of the vertebra. J. Biomech. Eng. 140:111005, 2018.
Palanca, M., T. M. Brugo, and L. Cristofolini. Use of digital image correlation to investigate the biomechanics of the vertebra. J. Mech. Med. Biol. 2015. https://doi.org/10.1142/S0219519415400047 .
doi: 10.1142/S0219519415400047
Palanca, M., M. Marco, M. L. Ruspi, and L. Cristofolini. Full-field strain distribution in multi-vertebra spine segments: an in vitro application of digital image correlation. Med. Eng. Phys. 52:76–83, 2018.
pubmed: 29229402
Palanca, M., G. Tozzi, and L. Cristofolini. The use of digital image correlation in the biomechanical area: a review. Int. Biomech. 3:1–21, 2016.
Perilli, E., M. Baleani, C. Öhman, R. Fognani, F. Baruffaldi, and M. Viceconti. Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur. J. Biomech. 41:438–446, 2008.
pubmed: 17949726
Phelan, E. A., J. E. Mahoney, J. C. Voit, and J. A. Stevens. Assessment and management of fall risk in primary care settings. Med. Clin. North Am. 99:281–293, 2015.
pubmed: 25700584
pmcid: 4707663
Roberts, B. J., E. Thrall, J. A. Muller, and M. L. Bouxsein. Comparison of hip fracture risk prediction by femoral aBMD to experimentally measured factor of risk. Bone 46:742–746, 2010.
pubmed: 19854307
Robinovitch, S. N., W. C. Hayes, and T. A. McMahon. Prediction of femoral impact forces in falls on the hip. J. Biomech. Eng. 113:366–374, 1991.
pubmed: 1762432
Seeman, E., and P. D. Delmas. Bone quality—the material and structural basis of bone strength and fragility. N. Engl. J. Med. 354:2250–2261, 2006.
pubmed: 16723616
Tang, T., V. Ebacher, P. Cripton, P. Guy, H. McKay, and R. Wang. Shear deformation and fracture of human cortical bone. Bone 71:25–35, 2015.
pubmed: 25305520
van den Kroonenberg, A. J., W. C. Hayes, and T. A. McMahon. Dynamic models for sideways falls from standing height. J. Biomech. Eng. 117:309–318, 1995.
pubmed: 8618384
Viceconti, M., M. Qasim, P. Bhattacharya, and X. Li. Are CT-based finite element model predictions of femoral bone strengthening clinically useful? Curr. Osteoporos. Rep. 16:216–223, 2018.
pubmed: 29656377
pmcid: 5945796
WHO. Assessment of Osteoporosis at the Primary Health Care Level. Sheffield: World Health Organization, 2007.
Zani, L., P. Erani, L. Grassi, F. Taddei, and L. Cristofolini. Strain distribution in the proximal Human femur during in vitro simulated sideways fall. J. Biomech. 48:2130–2143, 2015.
pubmed: 25843261