Deep Learning Prediction of Mild Cognitive Impairment using Electronic Health Records.

Alzheimer’s disease deep learning dementia machine learning mild cognitive impairment recurrent neural networks

Journal

Proceedings. IEEE International Conference on Bioinformatics and Biomedicine
ISSN: 2156-1125
Titre abrégé: Proceedings (IEEE Int Conf Bioinformatics Biomed)
Pays: United States
ID NLM: 101525347

Informations de publication

Date de publication:
Nov 2019
Historique:
entrez: 16 11 2020
pubmed: 17 11 2020
medline: 17 11 2020
Statut: ppublish

Résumé

About 44.4 million people have been diagnosed with dementia worldwide, and it is estimated that this number will be almost tripled by 2050. Predicting mild cognitive impairment (MCI), an intermediate state between normal cognition and dementia and an important risk factor for the development of dementia is crucial in aging populations. MCI is formally determined by health professionals through a comprehensive cognitive evaluation, together with a clinical examination, medical history and often the input of an informant (an individual that know the patient very well). However, this is not routinely performed in primary care visits, and could result in a significant delay in diagnosis. In this study, we used deep learning and machine learning techniques to predict the progression from cognitively unimpaired to MCI and also to analyze the potential for patient clustering using routinely-collected electronic health records (EHRs). Our analysis of EHRs indicates that temporal characteristics of patient data incorporated in a deep learning model provides increased power in predicting MCI.

Identifiants

pubmed: 33194303
doi: 10.1109/bibm47256.2019.8982955
pmc: PMC7665163
mid: NIHMS1637492
doi:

Types de publication

Journal Article

Langues

eng

Pagination

799-806

Subventions

Organisme : NIA NIH HHS
ID : P50 AG016574
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG034676
Pays : United States
Organisme : NIAID NIH HHS
ID : R21 AI142702
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG006786
Pays : United States

Références

Clin Geriatr Med. 2013 Nov;29(4):753-72
pubmed: 24094295
Front Aging Neurosci. 2013 Oct 03;5:58
pubmed: 24106478
Am J Epidemiol. 2011 May 1;173(9):1059-68
pubmed: 21430193
AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:149-53
pubmed: 24303255
Alzheimers Dement. 2014 Jan;10(1):18-26
pubmed: 23562428
IEEE J Biomed Health Inform. 2018 Sep;22(5):1589-1604
pubmed: 29989977
Int J Med Inform. 2017 Oct;106:48-56
pubmed: 28870383
PLoS One. 2018 Mar 29;13(3):e0194735
pubmed: 29596471
Am J Geriatr Psychiatry. 2015 Feb;23(2):119-29
pubmed: 23791538
Neurology. 2015 Apr 7;84(14):1433-42
pubmed: 25788555
J Biomed Inform. 2016 Dec;64:168-178
pubmed: 27744022
J Intern Med. 2004 Sep;256(3):183-94
pubmed: 15324362
Nature. 2017 Feb 2;542(7639):115-118
pubmed: 28117445
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):305-12
pubmed: 25320813
PLoS One. 2014 Aug 20;9(8):e105563
pubmed: 25140532
J Nutr Health Aging. 2007 Jul-Aug;11(4):359-61
pubmed: 17653500
BMC Neurol. 2011 Jun 24;11:78
pubmed: 21702929
Neurology. 2010 Sep 7;75(10):889-97
pubmed: 20820000
Ann Neurol. 2019 Jan;85(1):155-160
pubmed: 30521086
Mayo Clin Proc. 2012 Dec;87(12):1202-13
pubmed: 23199802
J Alzheimers Dis. 2014;42 Suppl 4:S329-38
pubmed: 25261451
Neuroepidemiology. 2008;30(1):58-69
pubmed: 18259084
J Gerontol A Biol Sci Med Sci. 2013 Aug;68(8):929-37
pubmed: 23250002
BMC Med Inform Decis Mak. 2019 Aug 8;19(Suppl 4):149
pubmed: 31391041
Neurology. 2012 Oct 9;79(15):1570-7
pubmed: 22972644
Health Informatics J. 2020 Jun;26(2):787-802
pubmed: 31106686
Ann N Y Acad Sci. 2009 Oct;1180:36-46
pubmed: 19906259
Dement Geriatr Cogn Disord. 2007;24(4):300-6
pubmed: 17717417
Int J Epidemiol. 2012 Dec;41(6):1614-24
pubmed: 23159830
Sci Rep. 2016 Apr 15;6:24454
pubmed: 27079888
Alzheimers Dement. 2014 Nov;10(6):704-12
pubmed: 24613706
NPJ Digit Med. 2018 May 8;1:18
pubmed: 31304302
Neurobiol Aging. 2010 Aug;31(8):1429-42
pubmed: 20541286
Brain. 2018 Mar 1;141(3):877-887
pubmed: 29365053
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2886-9
pubmed: 21095977
Arch Gen Psychiatry. 2008 Oct;65(10):1193-8
pubmed: 18838636

Auteurs

Sajjad Fouladvand (S)

Department of Computer Science, Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, USA.

Michelle M Mielke (MM)

Division of Epidemiology, Department of Neurology, Mayo Clinic, Rochester, MN USA.

Maria Vassilaki (M)

Division of Epidemiology, Mayo Clinic, Rochester, MN USA.

Jennifer St Sauver (JS)

Division of Epidemiology, Mayo Clinic, Rochester, MN USA.

Ronald C Petersen (RC)

Department of Neurology, Mayo Clinic, Rochester, MN USA.

Sunghwan Sohn (S)

Division of Digital Health Sciences, Mayo Clinic, Rochester, MN USA.

Classifications MeSH