Prognostic relevance of temporal muscle thickness as a marker of sarcopenia in patients with glioblastoma at diagnosis.


Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
Jun 2021
Historique:
received: 17 06 2020
accepted: 04 11 2020
revised: 16 10 2020
pubmed: 18 11 2020
medline: 21 5 2021
entrez: 17 11 2020
Statut: ppublish

Résumé

Temporal muscle thickness (TMT) is a surrogate marker of sarcopenia, correlated with survival expectancy in patients suffering from brain metastases and recurrent or treated glioblastoma. We evaluated the prognostic relevance of TMT measured on brain MRIs acquired at diagnosis in patients affected by glioblastoma. We retrospectively enrolled 51 patients in our Institution affected by methylated MGMT promoter, IDH1-2 wild-type glioblastoma, who underwent complete surgical resection and subsequent radiotherapy with concomitant and maintenance temozolomide, from January 1, 2015, to April 30, 2017. The last clinical/radiological follow-up date was set to September 3, 2019. TMT was measured bilaterally on reformatted post-contrast 3D MPRAGE images, acquired on our 3-T scanner no more than 2 days before surgery. The median, 25th, and 75th percentile TMT values were identified and population was subdivided accordingly; afterwards, statistical analyses were performed to verify the association among overall survival (OS) and TMT, sex, age, and ECOG performance status. In our cohort, the median OS was 20 months (range 3-51). Patients with a TMT ≥ 8.4 mm (median value) did not show a statistically significant increase in OS (Cox regression model: HR 1.34, 95% CI 0.68-2.63, p = 0.403). Similarly, patients with a TMT ≥ 9.85 mm (fourth quartile) did not differ in OS compared to those with TMT ≤ 7 mm (first quartile). The statistical analyses confirmed a significant association among TMT and sex (p = 0.0186), but none for age (p = 0.642) and performance status (p = 0.3982). In our homogeneous cohort of patients with glioblastoma at diagnosis, TMT was not associated with prognosis, age, or ECOG performance status. • Temporal muscle thickness (TMT) is a surrogate marker of sarcopenia and has been correlated with survival expectancy in patients suffering from brain metastases and recurrent or treated glioblastoma. • We appraised the correlation among TMT and survival, sex, age at surgery, and performance status, measured on brain MRIs of patients affected by glioblastoma at diagnosis. • TMT did not show any significant correlation with prognosis, age at surgery, or performance status, and its usefulness might be restricted only to patients with brain metastases and recurrent or treated glioblastoma.

Identifiants

pubmed: 33201284
doi: 10.1007/s00330-020-07471-8
pii: 10.1007/s00330-020-07471-8
doi:

Substances chimiques

DNA Modification Methylases EC 2.1.1.-
DNA Repair Enzymes EC 6.5.1.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4079-4086

Références

Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SHU (2017) Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 18:3–9. https://doi.org/10.22034/APJCP.2017.18.1.3
Tykocki T, Eltayeb M (2018) Ten-year survival in glioblastoma. A systematic review. J Clin Neurosci 54:7–13. https://doi.org/10.1016/j.jocn.2018.05.002
doi: 10.1016/j.jocn.2018.05.002 pubmed: 29801989 pmcid: 29801989
Chaichana KL, Martinez-Gutierrez JC, De la Garza-Ramos R et al (2013) Factors associated with survival for patients with glioblastoma with poor pre-operative functional status. J Clin Neurosci 20:818–823. https://doi.org/10.1016/j.jocn.2012.07.016
doi: 10.1016/j.jocn.2012.07.016 pubmed: 23639620 pmcid: 23639620
Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:16–31. https://doi.org/10.1093/ageing/afy169
doi: 10.1093/ageing/afy169
Lee HS, Kim SY, Chung MJ et al (2019) Skeletal muscle mass predicts poor prognosis in patients with advanced pancreatic cancer undergoing second-line FOLFIRINOX chemotherapy. Nutr Cancer 71:1100–1107. https://doi.org/10.1080/01635581.2019.1597906
doi: 10.1080/01635581.2019.1597906 pubmed: 30955349 pmcid: 30955349
Limpawattana P, Theerakulpisut D, Wirasorn K, Sookprasert A, Khuntikeo N, Chindaprasirt J (2018) The impact of skeletal muscle mass on survival outcome in biliary tract cancer patients. PLoS One 13:e0204985. https://doi.org/10.1371/journal.pone.0204985
Penna F, Ballarò R, Beltrà M, De Lucia S, Castillo LG, Costelli P (2019) The skeletal muscle as an active player against cancer cachexia. Front Physiol 10:41. https://doi.org/10.3389/fphys.2019.00041
Leitner J, Pelster S, Schöpf V et al (2018) High correlation of temporal muscle thickness with lumbar skeletal muscle cross-sectional area in patients with brain metastases. PLoS One 13:e0207849. https://doi.org/10.1371/journal.pone.0207849
doi: 10.1371/journal.pone.0207849 pubmed: 30496307 pmcid: 30496307
Hasegawa Y, Yoshida M, Sato A et al (2019) Temporal muscle thickness as a new indicator of nutritional status in older individuals. Geriatr Gerontol Int 19:135–140. https://doi.org/10.1111/ggi.13570
doi: 10.1111/ggi.13570 pubmed: 30689287 pmcid: 30689287
Furtner J, Berghoff AS, Schöpf V et al (2018) Temporal muscle thickness is an independent prognostic marker in melanoma patients with newly diagnosed brain metastases. J Neurooncol 140:173–178. https://doi.org/10.1007/s11060-018-2948-8
doi: 10.1007/s11060-018-2948-8 pubmed: 30008154 pmcid: 30008154
Furtner J, Genbrugge E, Gorlia T et al (2019) Temporal muscle thickness is an independent prognostic marker in patients with progressive glioblastoma: translational imaging analysis of the EORTC 26101 trial. Neuro Oncol. https://doi.org/10.1093/neuonc/noz131
Hsieh K, Hwang ME, Estevez-Inoa G et al (2019) Temporalis muscle width as a measure of sarcopenia correlates with overall survival in patients with newly diagnosed glioblastoma. J Radiat Oncol 8:379–387. https://doi.org/10.1007/s13566-019-00408-9
doi: 10.1007/s13566-019-00408-9
Furtner J, Berghoff AS, Albtoush OM et al (2017) Survival prediction using temporal muscle thickness measurements on cranial magnetic resonance images in patients with newly diagnosed brain metastases. Eur Radiol 27:3167–3173. https://doi.org/10.1007/s00330-016-4707-6
doi: 10.1007/s00330-016-4707-6 pubmed: 28050694 pmcid: 28050694
Chukwueke UN, Wen PY (2019) Use of the Response Assessment in Neuro-Oncology (RANO) criteria in clinical trials and clinical practice. CNS Oncol 8:CNS28. https://doi.org/10.2217/cns-2018-0007
doi: 10.2217/cns-2018-0007 pubmed: 30806082 pmcid: 30806082
Kelly C, Majewska P, Ioannidis S, Raza MH, Williams M (2017) Estimating progression-free survival in patients with glioblastoma using routinely collected data. J Neurooncol 135:621–627. https://doi.org/10.1007/s11060-017-2619-1
Sayer AA, Syddall H, Martin H, Baylis D, Cooper C (2008) The developmental origins of sarcopenia. J Nutr Health Aging 12:427–432. https://doi.org/10.1007/bf02982703
Jain KK (2018) A critical overview of targeted therapies for glioblastoma. Front Oncol 8:419. https://doi.org/10.3389/fonc.2018.00419
doi: 10.3389/fonc.2018.00419 pubmed: 30374421 pmcid: 30374421
Bauer J, Morley JE, Schols AMWJ et al (2019) Sarcopenia: a time for action. an SCWD position paper. J Cachexia Sarcopenia Muscle 10:956–961. https://doi.org/10.1002/jcsm.12483
doi: 10.1002/jcsm.12483 pubmed: 31523937 pmcid: 31523937
Liguori I, Russo G, Aran L et al (2018) Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin Interv Aging 13:913–927. https://doi.org/10.2147/CIA.S149232
doi: 10.2147/CIA.S149232 pubmed: 29785098 pmcid: 29785098
Faron A, Pieper CC, Schmeel FC, et al (2019) Fat-free muscle area measured by magnetic resonance imaging predicts overall survival of patients undergoing radioembolization of colorectal cancer liver metastases. Eur Radiol 1–9. https://doi.org/10.1007/s00330-018-5976-z
Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423. https://doi.org/10.1093/ageing/afq034
doi: 10.1093/ageing/afq034 pubmed: 2886201 pmcid: 2886201
Chang AE, Matory YL, Dwyer AJ et al (1987) Magnetic resonance imaging versus computed tomography in the evaluation of soft tissue tumors of the extremities. Ann Surg 205:340–348. https://doi.org/10.1097/00000658-198704000-00002
doi: 10.1097/00000658-198704000-00002 pubmed: 3032120 pmcid: 3032120
Albano D, Messina C, Vitale J, Sconfienza LM (2020) Imaging of sarcopenia: old evidence and new insights. Eur Radiol 30:2199–2208. https://doi.org/10.1007/s00330-019-06573-2
doi: 10.1007/s00330-019-06573-2 pubmed: 31834509 pmcid: 31834509
Engelke K, Museyko O, Wang L, Laredo J-D (2018) Quantitative analysis of skeletal muscle by computed tomography imaging-State of the art. J Orthop Translat 15:91–103. https://doi.org/10.1016/j.jot.2018.10.004
doi: 10.1016/j.jot.2018.10.004 pubmed: 30533385 pmcid: 30533385
Montano-Loza AJ, Ebadi M (2020) Definition and diagnosis of sarcopenia in the research and clinical settings. In: Tandon P, Montano-Loza AJ (eds) Frailty and sarcopenia in cirrhosis: the basics, the challenges, and the future. Springer International Publishing, Cham, pp 3–12
doi: 10.1007/978-3-030-26226-6_1
Grünheid T, Langenbach GEJ, Korfage JAM, Zentner A, van Eijden TMGJ (2009) The adaptive response of jaw muscles to varying functional demands. Eur J Orthod 31:596–612. https://doi.org/10.1093/ejo/cjp093
Ogawa S, Yakabe M, Akishita M (2016) Age-related sarcopenia and its pathophysiological bases. Inflamm Regen 36:17. https://doi.org/10.1186/s41232-016-0022-5
doi: 10.1186/s41232-016-0022-5 pubmed: 29259690 pmcid: 29259690
Roubenoff R (2000) Sarcopenia and its implications for the elderly. Eur J Clin Nutr 54(Suppl 3):S40–S47. https://doi.org/10.1038/sj.ejcn.1601024
doi: 10.1038/sj.ejcn.1601024 pubmed: 11041074 pmcid: 11041074
Roila F, Lupattelli M, Sassi M et al (1991) Intra and interobserver variability in cancer patients’ performance status assessed according to Karnofsky and ECOG scales. Ann Oncol 2:437–439. https://doi.org/10.1093/oxfordjournals.annonc.a057981
doi: 10.1093/oxfordjournals.annonc.a057981 pubmed: 1768630 pmcid: 1768630
Datta SS, Ghosal N, Daruvala R et al (2019) How do clinicians rate patient’s performance status using the ECOG performance scale? A mixed-methods exploration of variability in decision-making in oncology. Ecancermedicalscience 13:913. https://doi.org/10.3332/ecancer.2019.913
doi: 10.3332/ecancer.2019.913 pubmed: 31123496 pmcid: 31123496

Auteurs

Riccardo Muglia (R)

Training School in Radiology, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.

Matteo Simonelli (M)

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.
Oncology and Hematology Unit, Humanitas Clinical and Research Center - IRCCS, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy.

Federico Pessina (F)

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.
Department of Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy.

Emanuela Morenghi (E)

Biostatistic Unit, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.

Pierina Navarria (P)

Department of Radiotherapy, Humanitas Clinical and Research Center - IRCCS, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy.

Pasquale Persico (P)

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.
Oncology and Hematology Unit, Humanitas Clinical and Research Center - IRCCS, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy.

Elena Lorenzi (E)

Oncology and Hematology Unit, Humanitas Clinical and Research Center - IRCCS, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy.

Angelo Dipasquale (A)

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.
Oncology and Hematology Unit, Humanitas Clinical and Research Center - IRCCS, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy.

Marco Grimaldi (M)

Department of Neuroradiology, Humanitas Clinical and Research Center - IRCCS, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy.

Marta Scorsetti (M)

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.
Department of Radiotherapy, Humanitas Clinical and Research Center - IRCCS, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy.

Armando Santoro (A)

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.
Oncology and Hematology Unit, Humanitas Clinical and Research Center - IRCCS, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy.

Letterio S Politi (LS)

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy. letterio.politi@hunimed.eu.
Department of Neuroradiology, Humanitas Clinical and Research Center - IRCCS, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy. letterio.politi@hunimed.eu.
Hematology & Oncology Division and Radiology Department, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA. letterio.politi@hunimed.eu.
Radiology Department and Advanced MRI Center, University of Massachusetts Medical School and Medical Center, 55 Lake Avenue N, Worcester, MA, 01655, USA. letterio.politi@hunimed.eu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH