Prognostic relevance of temporal muscle thickness as a marker of sarcopenia in patients with glioblastoma at diagnosis.
Glioblastoma
MRI
Sarcopenia
Survival
Temporal muscle
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
Jun 2021
Jun 2021
Historique:
received:
17
06
2020
accepted:
04
11
2020
revised:
16
10
2020
pubmed:
18
11
2020
medline:
21
5
2021
entrez:
17
11
2020
Statut:
ppublish
Résumé
Temporal muscle thickness (TMT) is a surrogate marker of sarcopenia, correlated with survival expectancy in patients suffering from brain metastases and recurrent or treated glioblastoma. We evaluated the prognostic relevance of TMT measured on brain MRIs acquired at diagnosis in patients affected by glioblastoma. We retrospectively enrolled 51 patients in our Institution affected by methylated MGMT promoter, IDH1-2 wild-type glioblastoma, who underwent complete surgical resection and subsequent radiotherapy with concomitant and maintenance temozolomide, from January 1, 2015, to April 30, 2017. The last clinical/radiological follow-up date was set to September 3, 2019. TMT was measured bilaterally on reformatted post-contrast 3D MPRAGE images, acquired on our 3-T scanner no more than 2 days before surgery. The median, 25th, and 75th percentile TMT values were identified and population was subdivided accordingly; afterwards, statistical analyses were performed to verify the association among overall survival (OS) and TMT, sex, age, and ECOG performance status. In our cohort, the median OS was 20 months (range 3-51). Patients with a TMT ≥ 8.4 mm (median value) did not show a statistically significant increase in OS (Cox regression model: HR 1.34, 95% CI 0.68-2.63, p = 0.403). Similarly, patients with a TMT ≥ 9.85 mm (fourth quartile) did not differ in OS compared to those with TMT ≤ 7 mm (first quartile). The statistical analyses confirmed a significant association among TMT and sex (p = 0.0186), but none for age (p = 0.642) and performance status (p = 0.3982). In our homogeneous cohort of patients with glioblastoma at diagnosis, TMT was not associated with prognosis, age, or ECOG performance status. • Temporal muscle thickness (TMT) is a surrogate marker of sarcopenia and has been correlated with survival expectancy in patients suffering from brain metastases and recurrent or treated glioblastoma. • We appraised the correlation among TMT and survival, sex, age at surgery, and performance status, measured on brain MRIs of patients affected by glioblastoma at diagnosis. • TMT did not show any significant correlation with prognosis, age at surgery, or performance status, and its usefulness might be restricted only to patients with brain metastases and recurrent or treated glioblastoma.
Identifiants
pubmed: 33201284
doi: 10.1007/s00330-020-07471-8
pii: 10.1007/s00330-020-07471-8
doi:
Substances chimiques
DNA Modification Methylases
EC 2.1.1.-
DNA Repair Enzymes
EC 6.5.1.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4079-4086Références
Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SHU (2017) Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 18:3–9. https://doi.org/10.22034/APJCP.2017.18.1.3
Tykocki T, Eltayeb M (2018) Ten-year survival in glioblastoma. A systematic review. J Clin Neurosci 54:7–13. https://doi.org/10.1016/j.jocn.2018.05.002
doi: 10.1016/j.jocn.2018.05.002
pubmed: 29801989
pmcid: 29801989
Chaichana KL, Martinez-Gutierrez JC, De la Garza-Ramos R et al (2013) Factors associated with survival for patients with glioblastoma with poor pre-operative functional status. J Clin Neurosci 20:818–823. https://doi.org/10.1016/j.jocn.2012.07.016
doi: 10.1016/j.jocn.2012.07.016
pubmed: 23639620
pmcid: 23639620
Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:16–31. https://doi.org/10.1093/ageing/afy169
doi: 10.1093/ageing/afy169
Lee HS, Kim SY, Chung MJ et al (2019) Skeletal muscle mass predicts poor prognosis in patients with advanced pancreatic cancer undergoing second-line FOLFIRINOX chemotherapy. Nutr Cancer 71:1100–1107. https://doi.org/10.1080/01635581.2019.1597906
doi: 10.1080/01635581.2019.1597906
pubmed: 30955349
pmcid: 30955349
Limpawattana P, Theerakulpisut D, Wirasorn K, Sookprasert A, Khuntikeo N, Chindaprasirt J (2018) The impact of skeletal muscle mass on survival outcome in biliary tract cancer patients. PLoS One 13:e0204985. https://doi.org/10.1371/journal.pone.0204985
Penna F, Ballarò R, Beltrà M, De Lucia S, Castillo LG, Costelli P (2019) The skeletal muscle as an active player against cancer cachexia. Front Physiol 10:41. https://doi.org/10.3389/fphys.2019.00041
Leitner J, Pelster S, Schöpf V et al (2018) High correlation of temporal muscle thickness with lumbar skeletal muscle cross-sectional area in patients with brain metastases. PLoS One 13:e0207849. https://doi.org/10.1371/journal.pone.0207849
doi: 10.1371/journal.pone.0207849
pubmed: 30496307
pmcid: 30496307
Hasegawa Y, Yoshida M, Sato A et al (2019) Temporal muscle thickness as a new indicator of nutritional status in older individuals. Geriatr Gerontol Int 19:135–140. https://doi.org/10.1111/ggi.13570
doi: 10.1111/ggi.13570
pubmed: 30689287
pmcid: 30689287
Furtner J, Berghoff AS, Schöpf V et al (2018) Temporal muscle thickness is an independent prognostic marker in melanoma patients with newly diagnosed brain metastases. J Neurooncol 140:173–178. https://doi.org/10.1007/s11060-018-2948-8
doi: 10.1007/s11060-018-2948-8
pubmed: 30008154
pmcid: 30008154
Furtner J, Genbrugge E, Gorlia T et al (2019) Temporal muscle thickness is an independent prognostic marker in patients with progressive glioblastoma: translational imaging analysis of the EORTC 26101 trial. Neuro Oncol. https://doi.org/10.1093/neuonc/noz131
Hsieh K, Hwang ME, Estevez-Inoa G et al (2019) Temporalis muscle width as a measure of sarcopenia correlates with overall survival in patients with newly diagnosed glioblastoma. J Radiat Oncol 8:379–387. https://doi.org/10.1007/s13566-019-00408-9
doi: 10.1007/s13566-019-00408-9
Furtner J, Berghoff AS, Albtoush OM et al (2017) Survival prediction using temporal muscle thickness measurements on cranial magnetic resonance images in patients with newly diagnosed brain metastases. Eur Radiol 27:3167–3173. https://doi.org/10.1007/s00330-016-4707-6
doi: 10.1007/s00330-016-4707-6
pubmed: 28050694
pmcid: 28050694
Chukwueke UN, Wen PY (2019) Use of the Response Assessment in Neuro-Oncology (RANO) criteria in clinical trials and clinical practice. CNS Oncol 8:CNS28. https://doi.org/10.2217/cns-2018-0007
doi: 10.2217/cns-2018-0007
pubmed: 30806082
pmcid: 30806082
Kelly C, Majewska P, Ioannidis S, Raza MH, Williams M (2017) Estimating progression-free survival in patients with glioblastoma using routinely collected data. J Neurooncol 135:621–627. https://doi.org/10.1007/s11060-017-2619-1
Sayer AA, Syddall H, Martin H, Baylis D, Cooper C (2008) The developmental origins of sarcopenia. J Nutr Health Aging 12:427–432. https://doi.org/10.1007/bf02982703
Jain KK (2018) A critical overview of targeted therapies for glioblastoma. Front Oncol 8:419. https://doi.org/10.3389/fonc.2018.00419
doi: 10.3389/fonc.2018.00419
pubmed: 30374421
pmcid: 30374421
Bauer J, Morley JE, Schols AMWJ et al (2019) Sarcopenia: a time for action. an SCWD position paper. J Cachexia Sarcopenia Muscle 10:956–961. https://doi.org/10.1002/jcsm.12483
doi: 10.1002/jcsm.12483
pubmed: 31523937
pmcid: 31523937
Liguori I, Russo G, Aran L et al (2018) Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin Interv Aging 13:913–927. https://doi.org/10.2147/CIA.S149232
doi: 10.2147/CIA.S149232
pubmed: 29785098
pmcid: 29785098
Faron A, Pieper CC, Schmeel FC, et al (2019) Fat-free muscle area measured by magnetic resonance imaging predicts overall survival of patients undergoing radioembolization of colorectal cancer liver metastases. Eur Radiol 1–9. https://doi.org/10.1007/s00330-018-5976-z
Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423. https://doi.org/10.1093/ageing/afq034
doi: 10.1093/ageing/afq034
pubmed: 2886201
pmcid: 2886201
Chang AE, Matory YL, Dwyer AJ et al (1987) Magnetic resonance imaging versus computed tomography in the evaluation of soft tissue tumors of the extremities. Ann Surg 205:340–348. https://doi.org/10.1097/00000658-198704000-00002
doi: 10.1097/00000658-198704000-00002
pubmed: 3032120
pmcid: 3032120
Albano D, Messina C, Vitale J, Sconfienza LM (2020) Imaging of sarcopenia: old evidence and new insights. Eur Radiol 30:2199–2208. https://doi.org/10.1007/s00330-019-06573-2
doi: 10.1007/s00330-019-06573-2
pubmed: 31834509
pmcid: 31834509
Engelke K, Museyko O, Wang L, Laredo J-D (2018) Quantitative analysis of skeletal muscle by computed tomography imaging-State of the art. J Orthop Translat 15:91–103. https://doi.org/10.1016/j.jot.2018.10.004
doi: 10.1016/j.jot.2018.10.004
pubmed: 30533385
pmcid: 30533385
Montano-Loza AJ, Ebadi M (2020) Definition and diagnosis of sarcopenia in the research and clinical settings. In: Tandon P, Montano-Loza AJ (eds) Frailty and sarcopenia in cirrhosis: the basics, the challenges, and the future. Springer International Publishing, Cham, pp 3–12
doi: 10.1007/978-3-030-26226-6_1
Grünheid T, Langenbach GEJ, Korfage JAM, Zentner A, van Eijden TMGJ (2009) The adaptive response of jaw muscles to varying functional demands. Eur J Orthod 31:596–612. https://doi.org/10.1093/ejo/cjp093
Ogawa S, Yakabe M, Akishita M (2016) Age-related sarcopenia and its pathophysiological bases. Inflamm Regen 36:17. https://doi.org/10.1186/s41232-016-0022-5
doi: 10.1186/s41232-016-0022-5
pubmed: 29259690
pmcid: 29259690
Roubenoff R (2000) Sarcopenia and its implications for the elderly. Eur J Clin Nutr 54(Suppl 3):S40–S47. https://doi.org/10.1038/sj.ejcn.1601024
doi: 10.1038/sj.ejcn.1601024
pubmed: 11041074
pmcid: 11041074
Roila F, Lupattelli M, Sassi M et al (1991) Intra and interobserver variability in cancer patients’ performance status assessed according to Karnofsky and ECOG scales. Ann Oncol 2:437–439. https://doi.org/10.1093/oxfordjournals.annonc.a057981
doi: 10.1093/oxfordjournals.annonc.a057981
pubmed: 1768630
pmcid: 1768630
Datta SS, Ghosal N, Daruvala R et al (2019) How do clinicians rate patient’s performance status using the ECOG performance scale? A mixed-methods exploration of variability in decision-making in oncology. Ecancermedicalscience 13:913. https://doi.org/10.3332/ecancer.2019.913
doi: 10.3332/ecancer.2019.913
pubmed: 31123496
pmcid: 31123496