Biomarkers and phenotypic expression in Alzheimer's disease: exploring the contribution of frailty in the Alzheimer's Disease Neuroimaging Initiative.


Journal

GeroScience
ISSN: 2509-2723
Titre abrégé: Geroscience
Pays: Switzerland
ID NLM: 101686284

Informations de publication

Date de publication:
04 2021
Historique:
received: 06 08 2020
accepted: 23 10 2020
pubmed: 20 11 2020
medline: 1 6 2021
entrez: 19 11 2020
Statut: ppublish

Résumé

The present study aimed at investigating if the main biomarkers of Alzheimer's disease (AD) neuropathology and their association with cognitive disturbances and dementia are modified by the individual's frailty status. We performed a cross-sectional analysis of data from participants with normal cognition, mild cognitive impairment (MCI), and AD dementia enrolled in the Alzheimer's Disease Neuroimaging Initiative 2 (ADNI2) study. Frailty was operationalized by computing a 40-item Frailty Index (FI). The following AD biomarkers were considered and analyzed according to the participants' frailty status: CSF Aβ

Identifiants

pubmed: 33210215
doi: 10.1007/s11357-020-00293-y
pii: 10.1007/s11357-020-00293-y
pmc: PMC8110661
doi:

Substances chimiques

Amyloid beta-Peptides 0
Biomarkers 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1039-1051

Subventions

Organisme : NIA NIH HHS
ID : U01 AG024904
Pays : United States

Références

Espay AJ, Vizcarra JA, Marsili L, et al. Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology. 2019;92(7):329–37. https://doi.org/10.1212/WNL.0000000000006926 .
doi: 10.1212/WNL.0000000000006926 pubmed: 30745444 pmcid: 6382364
Illán-Gala I, Pegueroles J, Montal V, et al. Challenges associated with biomarker-based classification systems for Alzheimer’s disease. Alzheimers Dement Diagn Assess Dis Monit. 2018;10:346–57. https://doi.org/10.1016/j.dadm.2018.03.004 .
doi: 10.1016/j.dadm.2018.03.004
Clegg A, Young J, Iliffe S, et al. Frailty in elderly people. Lancet. 2013;381(9868):752–62. https://doi.org/10.1016/S0140-6736(12)62167-9 .
doi: 10.1016/S0140-6736(12)62167-9 pubmed: 23395245
Morley JE, Vellas B, van Kan GA, et al. Frailty consensus: a call to action. J Am Med Dir Assoc. 2013;14(6):392–7. https://doi.org/10.1016/j.jamda.2013.03.022 .
doi: 10.1016/j.jamda.2013.03.022 pubmed: 23764209 pmcid: 4084863
Hoogendijk EO, Afilalo J, Ensrud KE, et al. Frailty: implications for clinical practice and public health. Lancet. 2019;394(10206):1365–75. https://doi.org/10.1016/S0140-6736(19)31786-6 .
doi: 10.1016/S0140-6736(19)31786-6 pubmed: 31609228
Rockwood K, Howlett SE. Age-related deficit accumulation and the diseases of ageing. Mech Ageing Dev. 2019;180:107–16. https://doi.org/10.1016/j.mad.2019.04.005 .
doi: 10.1016/j.mad.2019.04.005 pubmed: 31002924
Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. ScientificWorldJournal. 2001;1:323–36. https://doi.org/10.1100/tsw.2001.58 .
doi: 10.1100/tsw.2001.58 pubmed: 12806071 pmcid: 6084020
Rogers NT, Steptoe A, Cadar D. Frailty is an independent predictor of incident dementia: evidence from the English Longitudinal Study of Ageing. Sci Rep. 2017;7. https://doi.org/10.1038/s41598-017-16104-y .
Song X, Mitnitski A, Rockwood K. Nontraditional risk factors combine to predict Alzheimer disease and dementia. Neurology. 2011;77(3):227–34. https://doi.org/10.1212/WNL.0b013e318225c6bc .
doi: 10.1212/WNL.0b013e318225c6bc pubmed: 21753161 pmcid: 3136058
Kelaiditi E, Andrieu S, Cantet C, et al. Frailty Index and incident mortality, hospitalization, and institutionalization in Alzheimer’s disease: data from the ICTUS study. J Gerontol A Biol Sci Med Sci. 2015;71(4):543–8. https://doi.org/10.1093/gerona/glv137 .
doi: 10.1093/gerona/glv137 pubmed: 26273022
Kelaiditi E, Canevelli M, Andrieu S, et al. Frailty Index and cognitive decline in Alzheimer’s disease: data from the Impact of Cholinergic Treatment USe study. J Am Geriatr Soc. 2016;64(6):1165–70. https://doi.org/10.1111/jgs.13956 .
doi: 10.1111/jgs.13956 pubmed: 27321595
Trebbastoni A, Canevelli M, D’Antonio F, et al. The impact of frailty on the risk of conversion from mild cognitive impairment to Alzheimer’s disease: evidences from a 5-year observational study. Front Med. 2017;4. https://doi.org/10.3389/fmed.2017.00178 .
Canevelli M, Trebbastoni A, Quarata F, et al. External validity of randomized controlled trials on Alzheimer’s disease: the biases of frailty and biological aging. Front Neurol. 2017;8:628. https://doi.org/10.3389/fneur.2017.00628 .
doi: 10.3389/fneur.2017.00628 pubmed: 29230192 pmcid: 5712065
Maltais M, De Souto Barreto P, Hooper C, et al. Association between brain β-amyloid and frailty in older adults. J Gerontol Ser A. 2019;74(11):1747–52. https://doi.org/10.1093/gerona/glz009 .
doi: 10.1093/gerona/glz009
Wallace LMK, Theou O, Godin J, et al. Investigation of frailty as a moderator of the relationship between neuropathology and dementia in Alzheimer’s disease: a cross-sectional analysis of data from the Rush Memory and Aging Project. Lancet Neurol. 2019;18(2):177–84. https://doi.org/10.1016/S1474-4422(18)30371-5 .
doi: 10.1016/S1474-4422(18)30371-5 pubmed: 30663607
Jack CR, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):257–62. https://doi.org/10.1016/j.jalz.2011.03.004 .
doi: 10.1016/j.jalz.2011.03.004 pubmed: 21514247 pmcid: 3096735
Blennow K. Biomarkers in Alzheimer’s disease drug development. Nat Med. 2010;16(11):1218–22. https://doi.org/10.1038/nm.2221 .
doi: 10.1038/nm.2221 pubmed: 21052077
Jack CR, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62. https://doi.org/10.1016/j.jalz.2018.02.018 .
doi: 10.1016/j.jalz.2018.02.018 pubmed: 29653606 pmcid: 5958625
Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15(7):673–84. https://doi.org/10.1016/S1474-4422(16)00070-3 .
doi: 10.1016/S1474-4422(16)00070-3 pubmed: 27068280
Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8.
doi: 10.1001/archneur.56.3.303 pubmed: 10190820
Petersen RC, Aisen PS, Beckett LA, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology. 2010;74(3):201–9. https://doi.org/10.1212/WNL.0b013e3181cb3e25 .
doi: 10.1212/WNL.0b013e3181cb3e25 pubmed: 20042704 pmcid: 2809036
Wechsler DA. Wechsler Memory Scale–Revised. New York Psychological Corporation 1987.
McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939–44.
doi: 10.1212/WNL.34.7.939 pubmed: 6610841
Jack CR, Barnes J, Bernstein MA, et al. Magnetic resonance imaging in ADNI. Alzheimers Dement. 2015;11(7):740–56. https://doi.org/10.1016/j.jalz.2015.05.002 .
doi: 10.1016/j.jalz.2015.05.002 pubmed: 26194310 pmcid: 4523217
Jagust WJ, Landau SM, Koeppe RA, et al. The Alzheimer’s Disease Neuroimaging Initiative 2 PET Core: 2015. Alzheimers Dement. 2015;11(7):757–71. https://doi.org/10.1016/j.jalz.2015.05.001 .
doi: 10.1016/j.jalz.2015.05.001 pubmed: 26194311 pmcid: 4510459
Landau SM, Fero A, Baker SL, et al. Measurement of longitudinal β-amyloid change with 18F-florbetapir PET and standardized uptake value ratios. J Nucl Med. 2015;56(4):567–74. https://doi.org/10.2967/jnumed.114.148981 .
doi: 10.2967/jnumed.114.148981 pubmed: 25745095
Shaw LM, Vanderstichele H, Knapik-Czajka M, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 2009;65(4):403–13. https://doi.org/10.1002/ana.21610 .
doi: 10.1002/ana.21610 pubmed: 19296504 pmcid: 2696350
Searle SD, Mitnitski A, Gahbauer EA, et al. A standard procedure for creating a Frailty Index. BMC Geriatr. 2008;8:24. https://doi.org/10.1186/1471-2318-8-24 .
doi: 10.1186/1471-2318-8-24 pubmed: 18826625 pmcid: 2573877
Hwang SJ, Beaty TH, Liang KY, et al. Minimum sample size estimation to detect gene-environment interaction in case-control designs. Am J Epidemiol. 1994;140(11):1029–37. https://doi.org/10.1093/oxfordjournals.aje.a117193 .
doi: 10.1093/oxfordjournals.aje.a117193 pubmed: 7985651
Hansson O, Seibyl J, Stomrud E, et al. CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: a study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement. 2018;14(11):1470–81. https://doi.org/10.1016/j.jalz.2018.01.010 .
doi: 10.1016/j.jalz.2018.01.010 pubmed: 29499171 pmcid: 6119541
Landau SM, Mintun MA, Joshi AD, et al. Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann Neurol. 2012;72(4):578–86. https://doi.org/10.1002/ana.23650 .
doi: 10.1002/ana.23650 pubmed: 23109153 pmcid: 3786871
Ou Y-N, Xu W, Li J-Q, et al. FDG-PET as an independent biomarker for Alzheimer’s biological diagnosis: a longitudinal study. Alzheimers Res Ther. 2019;11(1):57. https://doi.org/10.1186/s13195-019-0512-1 .
doi: 10.1186/s13195-019-0512-1 pubmed: 31253185 pmcid: 6599313
Wallace L, Theou O, Rockwood K, Andrew MK. Relationship between frailty and Alzheimer’s disease biomarkers: a scoping review. Alzheimers Dement Diagn Assess Dis Monit. 2018;10:394–401. https://doi.org/10.1016/j.dadm.2018.05.002 .
doi: 10.1016/j.dadm.2018.05.002
Bisset ES, Howlett SE. The biology of frailty in humans and animals: understanding frailty and promoting translation. Aging Med. 2019;2(1):27–34. https://doi.org/10.1002/agm2.12058 .
doi: 10.1002/agm2.12058
Canevelli M, Cesari M, Raganato R, et al. Role of frailty in the assessment of cognitive functioning. Mech Ageing Dev. 2019;181:42–6. https://doi.org/10.1016/j.mad.2019.111122 .
doi: 10.1016/j.mad.2019.111122 pubmed: 31170404
Weiner MW, Aisen PS, Jack CR, et al. The Alzheimer’s Disease Neuroimaging Initiative: progress report and future plans. Alzheimers Dement. 2010;6(3):202–11. e7. https://doi.org/10.1016/j.jalz.2010.03.007 .
doi: 10.1016/j.jalz.2010.03.007 pubmed: 20451868 pmcid: 2927112
Boyle PA, Yu L, Wilson RS, Leurgans SE, et al. Person-specific contribution of neuropathologies to cognitive loss in old age. Ann Neurol. 2018;83(1):74–83. https://doi.org/10.1002/ana.25123 .
doi: 10.1002/ana.25123 pubmed: 29244218 pmcid: 5876116

Auteurs

Marco Canevelli (M)

Department of Human Neuroscience, "Sapienza" University of Rome, Rome, Italy. marco.canevelli@uniroma1.it.
National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy. marco.canevelli@uniroma1.it.

Ivan Arisi (I)

Bioinformatics Facility, European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy.
Institute of Translational Pharmacology (IFT), CNR, Rome, Italy.

Ilaria Bacigalupo (I)

National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy.

Andrea Arighi (A)

Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
Dino Ferrari Center, University of Milan, Milan, Italy.

Daniela Galimberti (D)

Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
Dino Ferrari Center, University of Milan, Milan, Italy.
Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.

Nicola Vanacore (N)

National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy.

Mara D'Onofrio (M)

Institute of Translational Pharmacology (IFT), CNR, Rome, Italy.
Genomics Facility, European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy.

Matteo Cesari (M)

Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, Milan, Italy.

Giuseppe Bruno (G)

Department of Human Neuroscience, "Sapienza" University of Rome, Rome, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH