S616-p-DRP1 associates with locally invasive behavior of follicular cell-derived thyroid carcinoma.
Dynamin-related protein 1
Invasion
Mitochondrial dynamics
Thyroid cancer, Hürthle cell
Thyroid neoplasms, Oncocytic
Journal
Endocrine
ISSN: 1559-0100
Titre abrégé: Endocrine
Pays: United States
ID NLM: 9434444
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
05
08
2020
accepted:
02
11
2020
pubmed:
22
11
2020
medline:
9
7
2021
entrez:
21
11
2020
Statut:
ppublish
Résumé
Dynamin-related protein 1 (DRP1), a mitochondrial fission protein, and its active form phosphorylated at Serine 616 (S616-p-DRP1) have been increasingly associated with tumorigenesis and invasion in various tumor models, including oncocytic thyroid cancer (TC). In this study, the expression of DRP1 and S616-p-DRP1 and its relationship with patients' clinicopathological characteristics, tumor genetic profiles, and clinical outcomes were assessed in a large series of follicular cell-derived TC (FCDTC). Retrospective biomarker study characterizing the clinicopathological and immunochemistry DRP1 and S616-p-DRP1 expression of a series of 259 patients with FCDTC followed in two University Hospitals. DRP1 expression was positive in 65.3% (169/259) of the cases, while the expression of the S616-p-DRP1 was positive in only 17.3% (17/98). DRP1-positive expression was significantly associated with differentiated tumors (67.7 vs. 48.0%; P = 0.049), non-encapsulated tumors (73.8 vs. 57.4%; P = 0.011) and thyroid capsule invasion (73.4 vs. 57.5%; P = 0.013). S616-p-DRP1-positive expression was significantly associated with tumor infiltrative margins (88.9 vs. 11.1%; P = 0.033), thyroid capsule invasion (29.8 vs. 3.1%; P = 0.043), lymph node metastases (23.3 vs. 8.1%; P = 0.012), and higher mean cumulative radioiodine dosage (317.4 ± 265.0 mCi vs. 202.5 ± 217.7 mCi; P = 0.038). S616-p-DRP1 expression was negatively associated with oncocytic phenotype (0.0 vs. 26.2%; P = 0.028). S616-p-DRP1 is a better candidate than DRP1 to identify tumors with locally invasive behavior. Prospective studies should be pursued to assess S616-p-DRP1 role as a molecular marker of malignancy in TC and in patients' risk assessment.
Identifiants
pubmed: 33219495
doi: 10.1007/s12020-020-02546-4
pii: 10.1007/s12020-020-02546-4
doi:
Substances chimiques
Iodine Radioisotopes
0
Dynamins
EC 3.6.5.5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
85-97Références
J. Ferlay, M. Colombet, I. Soerjomataram, T. Dyba, G. Randi, M. Bettio, A. Gavin, O. Visser, F. Bray, Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer 103, 356–387 (2018). https://doi.org/10.1016/j.ejca.2018.07.005
doi: 10.1016/j.ejca.2018.07.005
pubmed: 30100160
World Health Organization (IARC), World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. ed. by R.A. DeLellis, R.V. Lloyd, R.U. Heitz, C (Eng. IARC Press, Lyon, France, 2004)
P. Soares, R. Celestino, M. Melo, E. Fonseca, M. Sobrinho-Simoes, Prognostic biomarkers in thyroid cancer. Virchows Arch 464, 333–346 (2014). https://doi.org/10.1007/s00428-013-1521-2
doi: 10.1007/s00428-013-1521-2
pubmed: 24487783
J.A. Sipos, E.L. Mazzaferri, Thyroid cancer epidemiology and prognostic variables. Clin. Oncol. 22, 395–404 (2010). https://doi.org/10.1016/j.clon.2010.05.004
doi: 10.1016/j.clon.2010.05.004
C. Tavares, M. Melo, J.M. Cameselle-Teijeiro, P. Soares, M. Sobrinho-Simoes, Endocrine tumours: genetic predictors of thyroid cancer outcome. Eur. J. Endocrinol. 174, R117–R126 (2016). https://doi.org/10.1530/EJE-15-0605
doi: 10.1530/EJE-15-0605
pubmed: 26510840
B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G.W. Randolph, A.M. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D.L. Steward, R.M. Tuttle, L. Wartofsky, 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26, 1–133 (2016). https://doi.org/10.1089/thy.2015.0020
doi: 10.1089/thy.2015.0020
pubmed: 26462967
pmcid: 4739132
M. Melo, A.G. da Rocha, J. Vinagre, R. Batista, J. Peixoto, C. Tavares, R. Celestino, A. Almeida, C. Salgado, C. Eloy, P. Castro, H. Prazeres, J. Lima, T. Amaro, C. Lobo, M.J. Martins, M. Moura, B. Cavaco, V. Leite, J.M. Cameselle-Teijeiro, F. Carrilho, M. Carvalheiro, V. Maximo, M. Sobrinho-Simoes, P. Soares, TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol. Metab. 99, E754–E765 (2014). https://doi.org/10.1210/jc.2013-3734
doi: 10.1210/jc.2013-3734
pubmed: 24476079
Cancer Genome Atlas Research, N., Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676–690 (2014). https://doi.org/10.1016/j.cell.2014.09.050
doi: 10.1016/j.cell.2014.09.050
M.N. Nikiforova, A.I. Wald, S. Roy, M.B. Durso, Y.E. Nikiforov, Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J. Clin. Endocrinol. Metab. 98, E1852–E1860 (2013). https://doi.org/10.1210/jc.2013-2292
doi: 10.1210/jc.2013-2292
pubmed: 23979959
A. Ferreira-da-Silva, C. Valacca, E. Rios, H. Populo, P. Soares, M. Sobrinho-Simoes, L. Scorrano, V. Maximo, S. Campello, Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration. PLoS ONE 10, e0122308 (2015). https://doi.org/10.1371/journal.pone.0122308
doi: 10.1371/journal.pone.0122308
pubmed: 25822260
Y. Yoon, K.R. Pitts, M.A. McNiven, Mammalian dynamin-like protein DLP1 tubulates membranes. Mol. Biol. Cell 12, 2894–2905 (2001). https://doi.org/10.1091/mbc.12.9.2894
doi: 10.1091/mbc.12.9.2894
pubmed: 11553726
pmcid: 59722
E. Smirnova, L. Griparic, D.L. Shurland, A.M. van der Bliek, Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245–2256 (2001). https://doi.org/10.1091/mbc.12.8.2245
doi: 10.1091/mbc.12.8.2245
pubmed: 11514614
pmcid: 58592
A.F. da Silva, F.R. Mariotti, V. Maximo, S. Campello, Mitochondria dynamism: of shape, transport and cell migration. Cell Mol. Life Sci. 71, 2313–2324 (2014). https://doi.org/10.1007/s00018-014-1557-8
doi: 10.1007/s00018-014-1557-8
pubmed: 24442478
R. Ramachandran, Mitochondrial dynamics: the dynamin superfamily and execution by collusion. Semin. Cell Dev. Biol. 76, 201–212 (2018). https://doi.org/10.1016/j.semcdb.2017.07.039
doi: 10.1016/j.semcdb.2017.07.039
pubmed: 28754444
P.J. Macdonald, N. Stepanyants, N. Mehrotra, J.A. Mears, X. Qi, H. Sesaki, R. Ramachandran, A dimeric equilibrium intermediate nucleates Drp1 reassembly on mitochondrial membranes for fission. Mol. Biol. Cell 25, 1905–1915 (2014). https://doi.org/10.1091/mbc.E14-02-0728
doi: 10.1091/mbc.E14-02-0728
pubmed: 24790094
pmcid: 4055269
R.J. Youle, A.M. van der Bliek, Mitochondrial fission, fusion, and stress. Science 337, 1062–1065 (2012). https://doi.org/10.1126/science.1219855
doi: 10.1126/science.1219855
pubmed: 22936770
pmcid: 4762028
A.R. Lima, L. Santos, M. Correia, P. Soares, M. Sobrinho-Simoes, M. Melo, V. Maximo, Dynamin-related protein 1 at the crossroads of cancer. Genes 9 (2018). https://doi.org/10.3390/genes9020115
G. Twig, A. Elorza, A.J. Molina, H. Mohamed, J.D. Wikstrom, G. Walzer, L. Stiles, S.E. Haigh, S. Katz, G. Las, J. Alroy, M. Wu, B.F. Py, J. Yuan, J.T. Deeney, B.E. Corkey, O.S. Shirihai, Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008). https://doi.org/10.1038/sj.emboj.7601963
doi: 10.1038/sj.emboj.7601963
pubmed: 18200046
N. Taguchi, N. Ishihara, A. Jofuku, T. Oka, K. Mihara, Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521–11529 (2007). https://doi.org/10.1074/jbc.M607279200
doi: 10.1074/jbc.M607279200
pubmed: 17301055
J. Rehman, H.J. Zhang, P.T. Toth, Y. Zhang, G. Marsboom, Z. Hong, R. Salgia, A.N. Husain, C. Wietholt, S.L. Archer, Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J 26, 2175–2186 (2012). https://doi.org/10.1096/fj.11-196543
doi: 10.1096/fj.11-196543
pubmed: 22321727
pmcid: 3336787
J.T. Ma, X.Y. Zhang, R. Cao, L. Sun, W. Jing, J.Z. Zhao, S.L. Zhang, L.T. Huang, C.B. Han, Effects of Dynamin-related protein 1 regulated mitochondrial dynamic changes on invasion and metastasis of lung cancer cells. J. Cancer 10, 4045–4053 (2019). https://doi.org/10.7150/jca.29756
doi: 10.7150/jca.29756
pubmed: 31417649
pmcid: 6692611
P. Zou, L. Liu, L.D. Zheng, K.K. Payne, M.H. Manjili, M.O. Idowu, J. Zhang, E.M. Schmelz, Z. Cheng, Coordinated upregulation of mitochondrial biogenesis and autophagy in breast cancer cells: the role of Dynamin related protein-1 and implication for breast cancer treatment. Oxid. Med. Cell Longev. 2016, 4085727 (2016). https://doi.org/10.1155/2016/4085727
doi: 10.1155/2016/4085727
pubmed: 27746856
pmcid: 5056295
J. Zhao, J. Zhang, M. Yu, Y. Xie, Y. Huang, D.W. Wolff, P.W. Abel, Y. Tu, Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32, 4814–4824 (2013). https://doi.org/10.1038/onc.2012.494
doi: 10.1038/onc.2012.494
pubmed: 23128392
A. Cormio, C. Musicco, G. Gasparre, G. Cormio, V. Pesce, A.M. Sardanelli, M.N. Gadaleta, Increase in proteins involved in mitochondrial fission, mitophagy, proteolysis and antioxidant response in type I endometrial cancer as an adaptive response to respiratory complex I deficiency. Biochem. Biophys. Res. Commun. 491, 85–90 (2017). https://doi.org/10.1016/j.bbrc.2017.07.047
doi: 10.1016/j.bbrc.2017.07.047
pubmed: 28698145
D.K. Tanwar, D.J. Parker, P. Gupta, B. Spurlock, R.D. Alvarez, M.K. Basu, K. Mitra, Crosstalk between the mitochondrial fission protein, Drp1, and the cell cycle is identified across various cancer types and can impact survival of epithelial ovarian cancer patients. Oncotarget 7, 60021–60037 (2016). https://doi.org/10.18632/oncotarget.11047
doi: 10.18632/oncotarget.11047
pubmed: 27509055
pmcid: 5312366
Y.Y. Wan, J.F. Zhang, Z.J. Yang, L.P. Jiang, Y.F. Wei, Q.N. Lai, J.B. Wang, H.B. Xin, X.J. Han, Involvement of Drp1 in hypoxia-induced migration of human glioblastoma U251 cells. Oncol. Rep. 32, 619–626 (2014). https://doi.org/10.3892/or.2014.3235
doi: 10.3892/or.2014.3235
pubmed: 24899388
Q. Xie, Q. Wu, C.M. Horbinski, W.A. Flavahan, K. Yang, W. Zhou, S.M. Dombrowski, Z. Huang, X. Fang, Y. Shi, A.N. Ferguson, D.F. Kashatus, S. Bao, J.N. Rich, Mitochondrial control by DRP1 in brain tumor initiating cells. Nat. Neurosci. 18, 501–510 (2015). https://doi.org/10.1038/nn.3960
doi: 10.1038/nn.3960
pubmed: 25730670
pmcid: 4376639
A. Inoue-Yamauchi, H. Oda, Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells. Biochem. Biophys. Res. Commun. 421, 81–85 (2012). https://doi.org/10.1016/j.bbrc.2012.03.118
doi: 10.1016/j.bbrc.2012.03.118
pubmed: 22487795
J.A. Kashatus, A. Nascimento, L.J. Myers, A. Sher, F.L. Byrne, K.L. Hoehn, C.M. Counter, D.F. Kashatus, Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol. Cell 57, 537–551 (2015). https://doi.org/10.1016/j.molcel.2015.01.002
doi: 10.1016/j.molcel.2015.01.002
pubmed: 25658205
pmcid: 4393013
L. Zhan, H. Cao, G. Wang, Y. Lyu, X. Sun, J. An, Z. Wu, Q. Huang, B. Liu, J. Xing, Drp1-mediated mitochondrial fission promotes cell proliferation through crosstalk of p53 and NF-kappaB pathways in hepatocellular carcinoma. Oncotarget 7, 65001–65011 (2016). https://doi.org/10.18632/oncotarget.11339
doi: 10.18632/oncotarget.11339
pubmed: 27542250
pmcid: 5323133
J. Li, Q. Huang, X. Long, X. Guo, X. Sun, X. Jin, Z. Li, T. Ren, P. Yuan, X. Huang, H. Zhang, J. Xing, Mitochondrial elongation-mediated glucose metabolism reprogramming is essential for tumour cell survival during energy stress. Oncogene 36, 4901–4912 (2017). https://doi.org/10.1038/onc.2017.98
doi: 10.1038/onc.2017.98
pubmed: 28436948
F.E. Lennon, G.C. Cianci, R. Kanteti, J.J. Riehm, Q. Arif, V.A. Poroyko, E. Lupovitch, W. Vigneswaran, A. Husain, P. Chen, J.K. Liao, M. Sattler, H.L. Kindler, R. Salgia, Unique fractal evaluation and therapeutic implications of mitochondrial morphology in malignant mesothelioma. Sci. Rep. 6, 24578 (2016). https://doi.org/10.1038/srep24578
doi: 10.1038/srep24578
pubmed: 27080907
M.N. Serasinghe, S.Y. Wieder, T.T. Renault, R. Elkholi, J.J. Asciolla, J.L. Yao, O. Jabado, K. Hoehn, Y. Kageyama, H. Sesaki, J.E. Chipuk, Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol. Cell 57, 521–536 (2015). https://doi.org/10.1016/j.molcel.2015.01.003
doi: 10.1016/j.molcel.2015.01.003
pubmed: 25658204
pmcid: 4320323
S.Y. Wieder, M.N. Serasinghe, J.C. Sung, D.C. Choi, M.B. Birge, J.L. Yao, E. Bernstein, J.T. Celebi, J.E. Chipuk, Activation of the mitochondrial fragmentation protein DRP1 correlates with BRAF(V600E) melanoma. J. Investig. Dermatol. 135, 2544–2547 (2015). https://doi.org/10.1038/jid.2015.196
doi: 10.1038/jid.2015.196
pubmed: 26032958
D.F. Kashatus, K.H. Lim, D.C. Brady, N.L. Pershing, A.D. Cox, C.M. Counter, RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat. Cell Biol. 13, 1108–1115 (2011). https://doi.org/10.1038/ncb2310
doi: 10.1038/ncb2310
pubmed: 21822277
pmcid: 3167028
R.V. Lloyd, R.Y. Osamura, G. Klöppel, J. Rosai, World Health Organization classification of tumours of endocrine organs, vol 10 (Lyon, France: International Agency for Research on Cancer (IARC); 2017)
S. Edge, C.C. Compton, A.G. Fritz, R. Greene, A. Trotti, AJCC cancer staging manual, 7th edn., p. 1–646 (New York: Springer; 2010).
J.P. Couto, H. Prazeres, P. Castro, J. Lima, V. Máximo, P. Soares, M. Sobrinho-Simões, How molecular pathology is changing and will change the therapeutics of patients with follicular cell-derived thyroid cancer. J. Clin. Pathol. 62, 414–421 (2009). https://doi.org/10.1136/jcp.2008.055343
doi: 10.1136/jcp.2008.055343
pubmed: 19147628
J.P. Couto, L. Daly, A. Almeida, J.A. Knauf, J.A. Fagin, M. Sobrinho-Simoes, J. Lima, V. Maximo, P. Soares, D. Lyden, J.F. Bromberg, STAT3 negatively regulates thyroid tumorigenesis. Proc. Natl Acad. Sci. USA 109, E2361–E2370 (2012). https://doi.org/10.1073/pnas.1201232109
doi: 10.1073/pnas.1201232109
pubmed: 22891351
P. Fonteyne, V. Casneuf, P. Pauwels, N. Van Damme, M. Peeters, R. Dierckx, C. Van de Wiele, Expression of hexokinases and glucose transporters in treated and untreated oesophageal adenocarcinoma. Histol. Histopathol. 24, 971–977 (2009). https://doi.org/10.14670/HH-24.971
doi: 10.14670/HH-24.971
pubmed: 19554504
W. Remmele, K.H. Schicketanz, Immunohistochemical determination of estrogen and progesterone receptor content in human breast cancer. Computer-assisted image analysis (QIC score) vs. subjective grading (IRS). Pathol. Res. Pract. 189, 862–866 (1993). https://doi.org/10.1016/S0344-0338(11)81095-2
doi: 10.1016/S0344-0338(11)81095-2
pubmed: 8302707
X.J. Han, Z.J. Yang, L.P. Jiang, Y.F. Wei, M.F. Liao, Y. Qian, Y. Li, X. Huang, J.B. Wang, H.B. Xin, Y.Y. Wan, Mitochondrial dynamics regulates hypoxia-induced migration and antineoplastic activity of cisplatin in breast cancer cells. Int. J. Oncol. 46, 691–700 (2015). https://doi.org/10.3892/ijo.2014.2781
doi: 10.3892/ijo.2014.2781
pubmed: 25434519
B.M. Michalska, K. Kwapiszewska, J. Szczepanowska, T. Kalwarczyk, P. Patalas-Krawczyk, K. Szczepanski, R. Holyst, J. Duszynski, J. Szymanski, Insight into the fission mechanism by quantitative characterization of Drp1 protein distribution in the living cell. Sci. Rep. 8, 8122 (2018). https://doi.org/10.1038/s41598-018-26578-z
doi: 10.1038/s41598-018-26578-z
pubmed: 29802333
M. Melo, A. Gaspar da Rocha, R. Batista, J. Vinagre, M.J. Martins, G. Costa, C. Ribeiro, F. Carrilho, V. Leite, C. Lobo, J.M. Cameselle-Teijeiro, B. Cavadas, L. Pereira, M. Sobrinho-Simoes, P. Soares, TERT, BRAF, and NRAS in primary thyroid cancer and metastatic disease. J. Clin. Endocrinol. Metab. 102, 1898–1907 (2017). https://doi.org/10.1210/jc.2016-2785
doi: 10.1210/jc.2016-2785
pubmed: 28323937
S. Nagdas, J.A. Kashatus, A. Nascimento, S.S. Hussain, R.E. Trainor, S.R. Pollock, S.J. Adair, A.D. Michaels, H. Sesaki, E.B. Stelow, T.W. Bauer, D.F. Kashatus, Drp1 promotes KRas-driven metabolic changes to drive pancreatic tumor growth. Cell Rep. 28, 1845–1859 e1845 (2019). https://doi.org/10.1016/j.celrep.2019.07.031
doi: 10.1016/j.celrep.2019.07.031
pubmed: 31412251
pmcid: 6711191
V. Maximo, M. Sobrinho-Simoes, Hurthle cell tumours of the thyroid. A review with emphasis on mitochondrial abnormalities with clinical relevance. Virchows Arch. 437, 107–115 (2000). https://doi.org/10.1007/s004280000219
doi: 10.1007/s004280000219
pubmed: 10993269
V. Maximo, P. Soares, J. Lima, J. Cameselle-Teijeiro, M. Sobrinho-Simoes, Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hurthle cell tumors. Am. J. Pathol. 160, 1857–1865 (2002). https://doi.org/10.1016/S0002-9440(10)61132-7
doi: 10.1016/S0002-9440(10)61132-7
pubmed: 12000737
pmcid: 1850872
E. Bonora, A.M. Porcelli, G. Gasparre, A. Biondi, A. Ghelli, V. Carelli, A. Baracca, G. Tallini, A. Martinuzzi, G. Lenaz, M. Rugolo, G. Romeo, Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res. 66, 6087–6096 (2006). https://doi.org/10.1158/0008-5472.CAN-06-0171
doi: 10.1158/0008-5472.CAN-06-0171
pubmed: 16778181
F.A. Zimmermann, J.A. Mayr, R. Feichtinger, D. Neureiter, R. Lechner, C. Koegler, M. Ratschek, H. Rusmir, K. Sargsyan, W. Sperl, B. Kofler, Respiratory chain complex I is a mitochondrial tumor suppressor of oncocytic tumors. Front. Biosci. 3, 315–325 (2011). https://doi.org/10.2741/e247
doi: 10.2741/e247
V. Maximo, T. Botelho, J. Capela, P. Soares, J. Lima, A. Taveira, T. Amaro, A.P. Barbosa, A. Preto, H.R. Harach, D. Williams, M. Sobrinho-Simoes, Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid. Br. J. Cancer 92, 1892–1898 (2005). https://doi.org/10.1038/sj.bjc.6602547
doi: 10.1038/sj.bjc.6602547
pubmed: 15841082
L. Pereira, P. Soares, V. Maximo, D.C. Samuels, Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors. BMC Cancer 12, 53 (2012). https://doi.org/10.1186/1471-2407-12-53
doi: 10.1186/1471-2407-12-53
pubmed: 22299657
G. Gasparre, A.M. Porcelli, E. Bonora, L.F. Pennisi, M. Toller, L. Iommarini, A. Ghelli, M. Moretti, C.M. Betts, G.N. Martinelli, A.R. Ceroni, F. Curcio, V. Carelli, M. Rugolo, G. Tallini, G. Romeo, Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc. Natl Acad. Sci. USA 104, 9001–9006 (2007). https://doi.org/10.1073/pnas.0703056104
doi: 10.1073/pnas.0703056104
pubmed: 17517629
M. Correia, P. Pinheiro, R. Batista, P. Soares, M. Sobrinho-Simoes, V. Maximo, Etiopathogenesis of oncocytomas. Semin. Cancer Biol. 47, 82–94 (2017). https://doi.org/10.1016/j.semcancer.2017.06.014
doi: 10.1016/j.semcancer.2017.06.014
pubmed: 28687249
R. Katoh, H.R. Harach, E.D. Williams, Solitary, multiple, and familial oxyphil tumours of the thyroid gland. J. Pathol. 186, 292–299 (1998). https://doi.org/10.1002/(sici)1096-9896(1998110)186:33.0.co;2-y
doi: 10.1002/(sici)1096-9896(1998110)186:33.0.co;2-y
pubmed: 10211119
H. Chen, D.C. Chan, Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum. Mol. Genet. 18, R169–R176 (2009). https://doi.org/10.1093/hmg/ddp326
doi: 10.1093/hmg/ddp326
pubmed: 19808793
pmcid: 2758711
W.K. Ji, A.L. Hatch, R.A. Merrill, S. Strack, H.N. Higgs, Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. Elife 4, e11553 (2015). https://doi.org/10.7554/eLife.11553
doi: 10.7554/eLife.11553
pubmed: 26609810
N. Stepanyants, P.J. Macdonald, C.A. Francy, J.A. Mears, X. Qi, R. Ramachandran, Cardiolipin’s propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission. Mol. Biol. Cell 26, 3104–3116 (2015). https://doi.org/10.1091/mbc.E15-06-0330
doi: 10.1091/mbc.E15-06-0330
pubmed: 26157169
pmcid: 4551322
E.A. Bordt, P. Clerc, B.A. Roelofs, A.J. Saladino, L. Tretter, V. Adam-Vizi, E. Cherok, A. Khalil, N. Yadava, S.X. Ge, T.C. Francis, N.W. Kennedy, L.K. Picton, T. Kumar, S. Uppuluri, A.M. Miller, K. Itoh, M. Karbowski, H. Sesaki, R.B. Hill, B.M. Polster, The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev. Cell 40, 583–594. e586 (2017). https://doi.org/10.1016/j.devcel.2017.02.020
doi: 10.1016/j.devcel.2017.02.020
pubmed: 28350990
pmcid: 5398851
S. Canberk, A.R. Lima, M. Correia, R. Batista, P. Soares, V. Máximo, M.S. Simões, Oncocytic thyroid neoplasms: from histology to molecular biology. Diagn. Histopathol. 25, 154–165 (2019). https://doi.org/10.1016/j.mpdhp.2019.02.002
doi: 10.1016/j.mpdhp.2019.02.002