Air pollution exposure during pregnancy and childhood and brain morphology in preadolescents.
Air pollutants
Brain development
Cohort studies
Environmental pollution
Neuroimaging
Journal
Environmental research
ISSN: 1096-0953
Titre abrégé: Environ Res
Pays: Netherlands
ID NLM: 0147621
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
23
09
2019
revised:
05
11
2020
accepted:
06
11
2020
pubmed:
23
11
2020
medline:
4
6
2021
entrez:
22
11
2020
Statut:
ppublish
Résumé
Studies investigating the relationship between exposure to air pollution and brain development using magnetic resonance images are emerging. However, most studies have focused only on prenatal exposures, and have included a limited selection of pollutants. Here, we aim to expand the current knowledge by studying pregnancy and childhood exposure to a wide selection of pollutants, and brain morphology in preadolescents. We used data from 3133 preadolescents from a birth cohort from Rotterdam, the Netherlands (enrollment: 2002-2006). Concentrations of nitrogen oxides, coarse, fine, and ultrafine particles, and composition of fine particles were estimated for participant's home addresses in pregnancy and childhood, using land use regression models. Structural brain images were obtained at age 9-12 years. We assessed the relationships of air pollution exposure, with brain volumes, and surface-based morphometric data, adjusting for socioeconomic and life-style characteristics, using single as well as multi-pollutant approach. No associations were observed between air pollution exposures and global volumes of total brain, and cortical and subcortical grey matter. However, we found associations between higher pregnancy and childhood air pollution exposures with smaller corpus callosum, smaller hippocampus, larger amygdala, smaller nucleus accumbens, and larger cerebellum (e.g. -69.2mm Higher pregnancy or childhood exposure to several air pollutants was associated with altered volume of several brain structures, as well as with cortical thickness and surface area. Associations showed some similarity to delayed maturation and effects of early-life stress.
Sections du résumé
BACKGROUND
Studies investigating the relationship between exposure to air pollution and brain development using magnetic resonance images are emerging. However, most studies have focused only on prenatal exposures, and have included a limited selection of pollutants. Here, we aim to expand the current knowledge by studying pregnancy and childhood exposure to a wide selection of pollutants, and brain morphology in preadolescents.
METHODS
We used data from 3133 preadolescents from a birth cohort from Rotterdam, the Netherlands (enrollment: 2002-2006). Concentrations of nitrogen oxides, coarse, fine, and ultrafine particles, and composition of fine particles were estimated for participant's home addresses in pregnancy and childhood, using land use regression models. Structural brain images were obtained at age 9-12 years. We assessed the relationships of air pollution exposure, with brain volumes, and surface-based morphometric data, adjusting for socioeconomic and life-style characteristics, using single as well as multi-pollutant approach.
RESULTS
No associations were observed between air pollution exposures and global volumes of total brain, and cortical and subcortical grey matter. However, we found associations between higher pregnancy and childhood air pollution exposures with smaller corpus callosum, smaller hippocampus, larger amygdala, smaller nucleus accumbens, and larger cerebellum (e.g. -69.2mm
CONCLUSION
Higher pregnancy or childhood exposure to several air pollutants was associated with altered volume of several brain structures, as well as with cortical thickness and surface area. Associations showed some similarity to delayed maturation and effects of early-life stress.
Identifiants
pubmed: 33221303
pii: S0013-9351(20)31343-8
doi: 10.1016/j.envres.2020.110446
pii:
doi:
Substances chimiques
Air Pollutants
0
Particulate Matter
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
110446Informations de copyright
Copyright © 2020 Elsevier Inc. All rights reserved.