Automatic multispectral MRI segmentation of human hippocampal subfields: an evaluation of multicentric test-retest reproducibility.
Automated segmentation
FreeSurfer
Hippocampal subfields
Human brain morphometry
Multispectral MRI
Test–retest reproducibility
Journal
Brain structure & function
ISSN: 1863-2661
Titre abrégé: Brain Struct Funct
Pays: Germany
ID NLM: 101282001
Informations de publication
Date de publication:
Jan 2021
Jan 2021
Historique:
received:
21
10
2019
accepted:
09
11
2020
pubmed:
25
11
2020
medline:
6
10
2021
entrez:
24
11
2020
Statut:
ppublish
Résumé
Accurate and reproducible automated segmentation of human hippocampal subfields is of interest to study their roles in cognitive functions and disease processes. Multispectral structural MRI methods have been proposed to improve automated hippocampal subfield segmentation accuracy, but the reproducibility in a multicentric setting is, to date, not well characterized. Here, we assessed test-retest reproducibility of FreeSurfer 6.0 hippocampal subfield segmentations using multispectral MRI analysis pipelines (22 healthy subjects scanned twice, a week apart, at four 3T MRI sites). The harmonized MRI protocol included two 3D-T1, a 3D-FLAIR, and a high-resolution 2D-T2. After within-session T1 averaging, subfield volumes were segmented using three pipelines with different multispectral data: two longitudinal ("long_T1s" and "long_T1s_FLAIR") and one cross-sectional ("long_T1s_FLAIR_crossT2"). Volume reproducibility was quantified in magnitude (reproducibility error-RE) and space (DICE coefficient). RE was lower in all hippocampal subfields, except for hippocampal fissure, using the longitudinal pipelines compared to long_T1s_FLAIR_crossT2 (average RE reduction of 0.4-3.6%). Similarly, the longitudinal pipelines showed a higher spatial reproducibility (1.1-7.8% of DICE improvement) in all hippocampal structures compared to long_T1s_FLAIR_crossT2. Moreover, long_T1s_FLAIR provided a small but significant RE improvement in comparison to long_T1s (p = 0.015), whereas no significant DICE differences were found. In addition, structures with volumes larger than 200 mm
Identifiants
pubmed: 33231744
doi: 10.1007/s00429-020-02172-w
pii: 10.1007/s00429-020-02172-w
pmc: PMC7817563
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
137-150Subventions
Organisme : Italian Minister of Health
ID : NET-2011-02346784
Références
Prog Neuropsychopharmacol Biol Psychiatry. 2014 Jan 3;48:124-8
pubmed: 24075822
Front Neurosci. 2017 May 09;11:258
pubmed: 28536501
Hum Brain Mapp. 2015 Jan;36(1):258-87
pubmed: 25181316
Biol Psychiatry. 2007 Oct 15;62(8):894-900
pubmed: 17617385
Psychiatry Res Neuroimaging. 2017 May 30;263:93-102
pubmed: 28371658
Hum Brain Mapp. 2010 Nov;31(11):1751-62
pubmed: 20162602
Neuroradiology. 2008 Jul;50(7):569-81
pubmed: 18414838
Neurobiol Aging. 2017 Mar;51:167-176
pubmed: 28089351
Hum Brain Mapp. 2015 Feb;36(2):463-74
pubmed: 25231681
Prog Neurobiol. 2014 Jun;117:20-40
pubmed: 24548606
Lancet Neurol. 2007 Aug;6(8):734-46
pubmed: 17616482
Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1837-41
pubmed: 1542680
Neuroimage. 2015 Jul 15;115:117-37
pubmed: 25936807
Epilepsia. 2017 Sep;58(9):1645-1652
pubmed: 28699215
Neuroimage. 2017 Jul 15;155:383-393
pubmed: 28404458
Neuroimage. 2012 Jul 16;61(4):1402-18
pubmed: 22430496
Neuroimage Clin. 2016 Feb 23;11:276-286
pubmed: 26977397
Neuroimage. 2009 Apr 15;45(3):855-66
pubmed: 19162198
Neuroimage Clin. 2013 Aug 14;3:155-62
pubmed: 24179859
Behav Brain Res. 2017 Jan 15;317:157-162
pubmed: 27646772
Science. 1998 May 8;280(5365):921-4
pubmed: 9572740
Brain Behav. 2016 Jun 14;6(6):e00515
pubmed: 27313977
Neuroscience. 2015 Nov 19;309:51-67
pubmed: 25772787
Hum Brain Mapp. 2015 Sep;36(9):3516-27
pubmed: 26043939
Neuroimage. 2016 Mar;128:125-137
pubmed: 26747746
J Alzheimers Dis. 2012;31(1):85-99
pubmed: 22504319
Neuroimage Clin. 2017 Dec 27;17:1006-1018
pubmed: 29527502
Curr Top Behav Neurosci. 2010;4:243-81
pubmed: 21312403
Neuroimage. 2013 Feb 1;66:28-35
pubmed: 23128076
Hum Brain Mapp. 2018 Apr;39(4):1743-1754
pubmed: 29341323
Hippocampus. 2006;16(8):664-72
pubmed: 16826559
Neurology. 1999 Dec 10;53(9):2145-50
pubmed: 10599796
Neuroimage. 2015 May 1;111:526-41
pubmed: 25596463
Neurobiol Aging. 2007 May;28(5):719-26
pubmed: 16713659
Nat Rev Neurol. 2011 Feb;7(2):99-108
pubmed: 21243016
Hum Brain Mapp. 2015 Nov;36(11):4483-96
pubmed: 26279309
Neuroimage. 2011 Jul 1;57(1):19-21
pubmed: 21376812
Neuroimage. 2010 Dec;53(4):1181-96
pubmed: 20637289
Hippocampus. 2009 Jun;19(6):549-57
pubmed: 19405131
Cortex. 2019 Oct;119:324-335
pubmed: 31181420
Neuroimage. 2020 Apr 15;210:116563
pubmed: 31972281
J Alzheimers Dis. 2018;63(1):217-225
pubmed: 29614654
Hippocampus. 2017 Jan;27(1):3-11
pubmed: 27862600
J Neurophysiol. 2017 Apr 1;117(4):1785-1796
pubmed: 28148640
Schizophr Res. 2007 Feb;90(1-3):62-70
pubmed: 17161938
Neuropsychologia. 2016 Dec;93(Pt B):380-385
pubmed: 27542320
Neuroimage. 2016 Nov 1;141:542-555
pubmed: 27426838
Neuroimage. 2013 Dec;83:472-84
pubmed: 23668971