Circulating Coding and Long Non-Coding RNAs as Potential Biomarkers of Idiopathic Pulmonary Fibrosis.
IPF
RNAs
biomarkers
liquid-biopsy
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
20 Nov 2020
20 Nov 2020
Historique:
received:
28
10
2020
revised:
16
11
2020
accepted:
19
11
2020
entrez:
25
11
2020
pubmed:
26
11
2020
medline:
11
3
2021
Statut:
epublish
Résumé
Idiopathic Pulmonary Fibrosis (IPF) is a chronic degenerative disease with a median survival of 2-5 years after diagnosis. Therefore, IPF patient identification represents an important and challenging clinical issue. Current research is still searching for novel reliable non-invasive biomarkers. Therefore, we explored the potential use of long non-coding RNAs (lncRNAs) and mRNAs as biomarkers for IPF. We first performed a whole transcriptome analysis using microarray ( 1059 differentially expressed transcripts were identified. We confirmed the downregulation of FOXF1 adjacent non-coding developmental regulatory RNA (FENDRR) lncRNA, hsa_circ_0001924 circularRNA, utrophin (UTRN) and Y-box binding protein 3 (YBX3) mRNAs. The two analyzed non-coding RNAs correlated with Forced Vital Capacity (FVC)% and Diffusing Capacity of the Lung for carbon monoxide (DLCO)% functional data, while coding RNAs correlated with smock exposure. All analyzed transcripts showed excellent performance in IPF identification with Area Under the Curve values above 0.87; the most outstanding one was YBX3: AUROC 0.944, CI 95% = 0.895-0.992, sensitivity = 90%, specificity = 88.9%, This study has identified specific transcript signatures in IPF suggesting that validated transcripts and microarray data could be useful for the potential future identification of RNA molecules as non-invasive biomarkers for IPF.
Sections du résumé
BACKGROUND
BACKGROUND
Idiopathic Pulmonary Fibrosis (IPF) is a chronic degenerative disease with a median survival of 2-5 years after diagnosis. Therefore, IPF patient identification represents an important and challenging clinical issue. Current research is still searching for novel reliable non-invasive biomarkers. Therefore, we explored the potential use of long non-coding RNAs (lncRNAs) and mRNAs as biomarkers for IPF.
METHODS
METHODS
We first performed a whole transcriptome analysis using microarray (
RESULTS
RESULTS
1059 differentially expressed transcripts were identified. We confirmed the downregulation of FOXF1 adjacent non-coding developmental regulatory RNA (FENDRR) lncRNA, hsa_circ_0001924 circularRNA, utrophin (UTRN) and Y-box binding protein 3 (YBX3) mRNAs. The two analyzed non-coding RNAs correlated with Forced Vital Capacity (FVC)% and Diffusing Capacity of the Lung for carbon monoxide (DLCO)% functional data, while coding RNAs correlated with smock exposure. All analyzed transcripts showed excellent performance in IPF identification with Area Under the Curve values above 0.87; the most outstanding one was YBX3: AUROC 0.944, CI 95% = 0.895-0.992, sensitivity = 90%, specificity = 88.9%,
CONCLUSIONS
CONCLUSIONS
This study has identified specific transcript signatures in IPF suggesting that validated transcripts and microarray data could be useful for the potential future identification of RNA molecules as non-invasive biomarkers for IPF.
Identifiants
pubmed: 33233868
pii: ijms21228812
doi: 10.3390/ijms21228812
pmc: PMC7709007
pii:
doi:
Substances chimiques
Biomarkers
0
RNA, Long Noncoding
0
RNA, Messenger
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Mol Genet Genomic Med. 2019 Sep;7(9):e909
pubmed: 31368668
Respir Res. 2011 May 27;12:70
pubmed: 21619599
Am J Respir Cell Mol Biol. 2020 Apr;62(4):440-453
pubmed: 31697569
Respir Res. 2018 Feb 22;19(1):32
pubmed: 29471816
Liver Int. 2019 Sep;39(9):1742-1754
pubmed: 31169972
Eur Respir Rev. 2017 Oct 3;26(145):
pubmed: 28974541
Dis Markers. 2016;2016:9085195
pubmed: 27143813
Cancer Drug Resist. 2019 Dec 19;2:1178-1192
pubmed: 31867576
Gene. 2015 May 10;562(1):138-44
pubmed: 25725128
Cell Physiol Biochem. 2018;49(2):816-827
pubmed: 30165346
World J Gastroenterol. 2015 Jul 28;21(28):8527-40
pubmed: 26229396
Medicina (Kaunas). 2011;47(4):200-5
pubmed: 21829051
Front Med (Lausanne). 2018 Mar 20;5:43
pubmed: 29616220
Cell Death Dis. 2019 Jan 28;10(2):82
pubmed: 30692507
Sci Rep. 2016 Jan 20;6:19413
pubmed: 26786760
Hepatology. 2010 Jun;51(6):2127-39
pubmed: 20235334
Exp Mol Med. 2018 Jan 19;50(1):e428
pubmed: 29350677
Physiol Rep. 2020 Jan;8(1):e14343
pubmed: 31925944
Clin Chem. 2001 Aug;47(8):1488-9
pubmed: 11468248
Cell Rep. 2019 Jun 11;27(11):3097-3106.e5
pubmed: 31189097
Int J Mol Sci. 2018 Nov 28;19(12):
pubmed: 30487448
Nutr Metab Cardiovasc Dis. 2016 Dec;26(12):1129-1139
pubmed: 27756518
Sci Rep. 2019 Dec 30;9(1):20354
pubmed: 31889114
Oncotarget. 2015 Sep 15;6(27):23249-60
pubmed: 26015394