The acquisitive-conservative axis of leaf trait variation emerges even in homogeneous environments.
Fabaceae
Leaf functional traits
Poaceae
acquisitive syndrome
common garden experiment
conservative syndrome
intraspecific trait variation
leaf economics spectrum
Journal
Annals of botany
ISSN: 1095-8290
Titre abrégé: Ann Bot
Pays: England
ID NLM: 0372347
Informations de publication
Date de publication:
12 05 2022
12 05 2022
Historique:
received:
14
08
2020
accepted:
18
11
2020
pubmed:
28
11
2020
medline:
20
5
2022
entrez:
27
11
2020
Statut:
ppublish
Résumé
The acquisitive-conservative axis of plant ecological strategies results in a pattern of leaf trait covariation that captures the balance between leaf construction costs and plant growth potential. Studies evaluating trait covariation within species are scarcer, and have mostly dealt with variation in response to environmental gradients. Little work has been published on intraspecific patterns of leaf trait covariation in the absence of strong environmental variation. We analysed covariation of four leaf functional traits [specific leaf area (SLA) leaf dry matter content (LDMC), force to tear (Ft) and leaf nitrogen content (Nm)] in six Poaceae and four Fabaceae species common in the dry Chaco forest of Central Argentina, growing in the field and in a common garden. We compared intraspecific covariation patterns (slopes, correlation and effect size) of leaf functional traits with global interspecific covariation patterns. Additionally, we checked for possible climatic and edaphic factors that could affect the intraspecific covariation pattern. We found negative correlations for the LDMC-SLA, Ft-SLA, LDMC-Nm and Ft-Nm trait pairs. This intraspecific covariation pattern found both in the field and in the common garden and not explained by climatic or edaphic variation in the field follows the expected acquisitive-conservative axis. At the same time, we found quantitative differences in slopes among different species, and between these intraspecific patterns and the interspecific ones. Many of these differences seem to be idiosyncratic, but some appear consistent among species (e.g. all the intraspecific LDMC-SLA and LDMC-Nm slopes tend to be shallower than the global pattern). Our study indicates that the acquisitive-conservative leaf functional trait covariation pattern occurs at the intraspecific level even in the absence of relevant environmental variation in the field. This suggests a high degree of variation-covariation in leaf functional traits not driven by environmental variables.
Sections du résumé
BACKGROUND AND AIMS
The acquisitive-conservative axis of plant ecological strategies results in a pattern of leaf trait covariation that captures the balance between leaf construction costs and plant growth potential. Studies evaluating trait covariation within species are scarcer, and have mostly dealt with variation in response to environmental gradients. Little work has been published on intraspecific patterns of leaf trait covariation in the absence of strong environmental variation.
METHODS
We analysed covariation of four leaf functional traits [specific leaf area (SLA) leaf dry matter content (LDMC), force to tear (Ft) and leaf nitrogen content (Nm)] in six Poaceae and four Fabaceae species common in the dry Chaco forest of Central Argentina, growing in the field and in a common garden. We compared intraspecific covariation patterns (slopes, correlation and effect size) of leaf functional traits with global interspecific covariation patterns. Additionally, we checked for possible climatic and edaphic factors that could affect the intraspecific covariation pattern.
KEY RESULTS
We found negative correlations for the LDMC-SLA, Ft-SLA, LDMC-Nm and Ft-Nm trait pairs. This intraspecific covariation pattern found both in the field and in the common garden and not explained by climatic or edaphic variation in the field follows the expected acquisitive-conservative axis. At the same time, we found quantitative differences in slopes among different species, and between these intraspecific patterns and the interspecific ones. Many of these differences seem to be idiosyncratic, but some appear consistent among species (e.g. all the intraspecific LDMC-SLA and LDMC-Nm slopes tend to be shallower than the global pattern).
CONCLUSIONS
Our study indicates that the acquisitive-conservative leaf functional trait covariation pattern occurs at the intraspecific level even in the absence of relevant environmental variation in the field. This suggests a high degree of variation-covariation in leaf functional traits not driven by environmental variables.
Identifiants
pubmed: 33245747
pii: 6007600
doi: 10.1093/aob/mcaa198
pmc: PMC9113165
doi:
Substances chimiques
Nitrogen
N762921K75
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
709-722Informations de copyright
© The Author(s) 2020. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Références
Ecol Lett. 2015 Nov;18(11):1181-1189
pubmed: 26311436
New Phytol. 2016 May;210(3):861-74
pubmed: 26749302
Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11001-6
pubmed: 15213326
Ecol Lett. 2012 Oct;15(10):1149-57
pubmed: 22856883
Ecology. 2006 Mar;87(3):535-41
pubmed: 16602282
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4098-103
pubmed: 27035971
Science. 2008 Oct 24;322(5901):580-2
pubmed: 18948539
PLoS One. 2014 Oct 20;9(10):e111189
pubmed: 25329794
Ecol Lett. 2015 Dec;18(12):1406-19
pubmed: 26415616
Funct Ecol. 2013 Apr 1;27(2):382-391
pubmed: 24790285
Ecology. 2007 May;88(5):1132-41
pubmed: 17536400
Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13730-4
pubmed: 9391094
Ecol Lett. 2008 Oct;11(10):1065-71
pubmed: 18627410
Ecol Lett. 2011 Nov;14(11):1117-24
pubmed: 21923895
Sci Rep. 2019 Jul 24;9(1):10758
pubmed: 31341185
Oecologia. 2012 Jan;168(1):23-34
pubmed: 21833645
New Phytol. 2011 Apr;190(1):169-180
pubmed: 21182527
New Phytol. 2017 Jun;214(4):1447-1463
pubmed: 28295374
New Phytol. 2007;176(2):375-389
pubmed: 17692077
Ecol Lett. 2011 Feb;14(2):91-100
pubmed: 21073643
Front Plant Sci. 2015 Oct 26;6:901
pubmed: 26579151
Trends Genet. 2013 Feb;29(2):66-73
pubmed: 23140989
Ecology. 2006 Jul;87(7 Suppl):S109-22
pubmed: 16922307
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):740-5
pubmed: 24379395
Nature. 2016 Jan 14;529(7585):167-71
pubmed: 26700811
Tree Physiol. 2000 May;20(9):565-578
pubmed: 12651421
Oecologia. 2011 Apr;165(4):1109-17
pubmed: 21328008
New Phytol. 2014 Aug;203(3):851-62
pubmed: 24841886
Ann Bot. 2005 Nov;96(6):1129-36
pubmed: 16159941
Am Nat. 2010 Feb;175(2):225-39
pubmed: 20030563
PLoS One. 2015 Mar 19;10(3):e0122156
pubmed: 25789485
Oecologia. 2011 May;166(1):1-10
pubmed: 21221646
New Phytol. 2015 Apr;206(2):614-36
pubmed: 25581061
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6895-900
pubmed: 23569241
Ecol Lett. 2010 Nov;13(11):1338-47
pubmed: 20807232
Oecologia. 2000 Sep;124(4):476-486
pubmed: 28308386
Plant Physiol. 1997 Mar;113(3):961-965
pubmed: 12223656
Ecol Lett. 2010 Jul;13(7):838-48
pubmed: 20482582
Am J Bot. 2004 Feb;91(2):228-46
pubmed: 21653379
Oecologia. 2014 Jun;175(2):639-49
pubmed: 24705648
Ann Bot. 2019 Jan 1;123(1):107-120
pubmed: 30107396
Ann Bot. 2011 Mar;107(3):455-65
pubmed: 21199835
Am J Bot. 2012 Nov;99(11):1756-63
pubmed: 23132615
Ecology. 2018 May;99(5):1024-1030
pubmed: 29603183
Ecol Lett. 2011 Mar;14(3):301-12
pubmed: 21265976
Ecol Lett. 2018 May;21(5):734-744
pubmed: 29569818
Glob Chang Biol. 2020 Jan;26(1):119-188
pubmed: 31891233
Science. 2006 Nov 3;314(5800):812-4
pubmed: 17023613
Evolution. 2009 Mar;63(3):702-15
pubmed: 19054049
New Phytol. 2012 Aug;195(3):640-652
pubmed: 22709147
New Phytol. 2009;183(4):980-992
pubmed: 19563444
Plant Cell Environ. 2014 Jun;37(6):1415-26
pubmed: 24279358
Oecologia. 2016 Apr;180(4):1001-13
pubmed: 26830292
Hereditas. 2000;132(1):19-27
pubmed: 10857255
Oecologia. 2011 Feb;165(2):477-87
pubmed: 20686787
Biol Rev Camb Philos Soc. 2006 May;81(2):259-91
pubmed: 16573844
AoB Plants. 2015 May 08;7:
pubmed: 25957316
New Phytol. 2015 Jan;205(1):79-96
pubmed: 25580487
New Phytol. 2005 May;166(2):485-96
pubmed: 15819912
Nature. 2004 Apr 22;428(6985):821-7
pubmed: 15103368
Am Nat. 2006 Oct;168(4):E103-22
pubmed: 17004214
J Exp Bot. 2018 Nov 26;69(22):5599-5609
pubmed: 30189099
Tree Physiol. 2003 Sep;23(13):865-77
pubmed: 14532010
New Phytol. 2020 Jan;225(1):546-557
pubmed: 31403698
PLoS Biol. 2020 Aug 17;18(8):e3000836
pubmed: 32804946
Trends Ecol Evol. 2011 Feb;26(2):88-95
pubmed: 21196061
Plant Biol (Stuttg). 2014 Sep;16(5):897-907
pubmed: 24552639
Biol Rev Camb Philos Soc. 2017 May;92(2):1156-1173
pubmed: 27103505
Oecologia. 1999 Sep;120(4):544-554
pubmed: 28308305
New Phytol. 2006;170(4):807-18
pubmed: 16684240
Trends Ecol Evol. 2006 Apr;21(4):178-85
pubmed: 16701083
PLoS One. 2013;8(3):e58878
pubmed: 23527041
Am J Bot. 2004 Jan;91(1):58-64
pubmed: 21653363
Nature. 2012 Nov 29;491(7426):752-5
pubmed: 23172141