Nutrients cause grassland biomass to outpace herbivory.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
27 11 2020
Historique:
received: 24 01 2020
accepted: 26 10 2020
entrez: 28 11 2020
pubmed: 29 11 2020
medline: 15 12 2020
Statut: epublish

Résumé

Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs ('consumer-controlled'). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food ('resource-controlled'). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilization-induced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk.

Identifiants

pubmed: 33247130
doi: 10.1038/s41467-020-19870-y
pii: 10.1038/s41467-020-19870-y
pmc: PMC7695826
doi:

Substances chimiques

Fertilizers 0
Phosphorus 27YLU75U4W
Nitrogen N762921K75

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

6036

Commentaires et corrections

Type : ErratumIn

Références

Running, S. W. A measurable planetary boundary for the biosphere. Science 337, 1458–1459 (2012).
Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12945 (2007).
pubmed: 17616580 pmcid: 17616580
Xia, J. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 6, 1783 (2014).
Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).
Del Grosso, S. et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 2117–2126 (2008).
pubmed: 18724722 pmcid: 18724722
Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004).
Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).
McNaughton, S. J., Oesterheld, M., Frank, D. A. & Williams, K. J. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341, 142–144 (1989).
pubmed: 2779651 pmcid: 2779651
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
pubmed: 21993620 pmcid: 21993620
White, R. P., Murray, S. & Rohweder, M. Pilot Analysis of Global Ecosystems (PAGE): Grassland Ecosystems, 70 (World Resources Institute, Washington, DC, 2000).
Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).
Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 151 (Geneva, Switzerland, 2014).
Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of earth’s nitrogen cycle. Science 330, 192–196 (2010).
Stevens, C. J. Nitrogen in the environment. Science 363, 578–580 (2019).
Stevens, C. J. et al. Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology 96, 1459–1465 (2015).
Reyer, C. P. O. et al. A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob. Change Biol. 19, 75–89 (2013).
Knapp, A. K. et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience 58, 811–821 (2008).
LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).
Fay, P. A. et al. Grassland productivity limited by multiple nutrients. Nat. Plants 1, 15080 (2015).
Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).
pubmed: 24670649 pmcid: 24670649
Knapp, A. K. & Seastedt, T. R. Detritus accumulation limits productivity of tallgrass prairie: the effects of its plant litter on ecosystem function make the tallgrass prairie unique among North American biomes. BioScience 36, 662–668 (1986).
Volterra, V. Variations and fluctuations of the numbers of individuals in animal species living together. Nature 118, 558–560 (1926).
Crawley, M. J. Herbivory: The Dynamics of Animal-Plant Interactions, Vol. 10, 437 (University of California Press, 1983).
Oksanen, L. & Oksanen, T. The logic and realism of the hypothesis of exploitation ecosystems. Am. Nat. 155, 703–723 (2000).
pubmed: 10805639 pmcid: 10805639
Gruner, D. S. et al. A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecol. Lett. 11, 740–755 (2008).
pubmed: 18445030 pmcid: 18445030
Hillebrand, H. et al. Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc. Natl Acad. Sci. USA 104, 10904–10909 (2007).
pubmed: 17581875 pmcid: 17581875
Worm, B., Lotze, H. K., Hillebrand, H. & Sommer, U. Consumer versus resource control of species diversity and ecosystem functioning. Nature 417, 848–851 (2002).
pubmed: 12075351 pmcid: 12075351
Turkington, R. Top-down and bottom-up forces in mammalian herbivore - vegetation systems: an essay review. Botany 87, 723–739 (2009).
DeAngelis, D. L. Dynamics of Nutrient Cycling and Food Webs (Chapman and Hall, London, 1992).
Arditi, R. & Ginzburg, L. R. Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989).
Chase, J. M., Leibold, M. A., Downing, A. L. & Shurin, J. B. The effects of productivity, herbivory, and plant species turnover in grassland food webs. Ecology 81, 2485–2497 (2000).
Leibold, M. A. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. Am. Nat. 134, 922–949 (1989).
Endara, M. J. & Coley, P. D. The resource availability hypothesis revisited: a meta-analysis. Funct. Ecol. 25, 389–398 (2011).
Milchunas, D. G. & Lauenroth, W. K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol. Monogr. 63, 327–366 (1993).
Polis, G. A. & Strong, D. R. Food web complexity and community dynamics. Am. Nat. 147, 813–846 (1996).
Murdoch, W. Community structure, population control, and competition - a critique. Am. Nat. 100, 219–226 (1966).
Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evolution 5, 65–73 (2014).
Anderson, T. M. et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology 99, 822–831 (2018).
Zhu, D. et al. The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nat. Ecol. Evol. 2, 640–649 (2018).
pubmed: 29483680 pmcid: 29483680
Hillebrand, H. Top-down versus bottom-up control of autotrophic biomass - a meta-analysis on experiments with periphyton. J. North Am. Benthol. Soc. 21, 349–369 (2002).
Frank, R. & Merle, L. F. Effects of annual applications of low N fertilizer rates on a mixed grass prairie. J. Range Manag. 36, 359–362 (1983).
Olofsson, J. et al. Long-term experiments reveal strong interactions between lemmings and plants in the Fennoscandian highland tundra. Ecosystems 17, 606–615 (2014).
Lemaire, G., Jeuffroy, M.-H. & Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: theory and practices for crop N management. Eur. J. Agron. 28, 614–624 (2008).
Hillebrand, H. et al. Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems. Ecol. Lett. 12, 516–527 (2009).
Hempson, G. P., Illius, A. W., Hendricks, H. H., Bond, W. J. & Vetter, S. Herbivore population regulation and resource heterogeneity in a stochastic environment. Ecology 96, 2170–2180 (2015).
pubmed: 26405742 pmcid: 26405742
Sickman, J. O. et al. Quantifying atmospheric N deposition in dryland ecosystems: a test of the Integrated Total Nitrogen Input (ITNI) method. Sci. Total Environ. 646, 1253–1264 (2019).
pubmed: 30235611 pmcid: 30235611
Yahdjian, L., Gherardi, L. & Sala, O. E. Nitrogen limitation in arid-subhumid ecosystems: a meta-analysis of fertilization studies. J. Arid Environ. 75, 675–680 (2011).
Koerner, S. E. et al. Plant community response to loss of large herbivores differs between North American and South African savanna grasslands. Ecology 95, 808–816 (2014).
pubmed: 24933802 pmcid: 24933802
Frank, D. A., McNaughton, S. J. & Tracy, B. F. The ecology of the Earth’s grazing ecosystems: profound functional similarities exist between the Serengeti and Yellowstone. Bioscience 48, 513–521 (1998).
Augustine, D. J. & McNaughton, S. J. Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems 9, 1242–1256 (2006).
Ritchie, M. E., Tilman, D. & Knops, J. M. H. Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology 79, 165–177 (1998).
Pastor, J., Dewey, B., Naiman, R. J., McInnes, P. F. & Cohen, Y. Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology 74, 467–480 (1993).
Grellmann, D. Plant responses to fertilization and exclusion of grazers on an Arctic tundra heath. Oikos 98, 190–204 (2002).
Hartley, S. E. & Mitchell, R. J. Manipulation of nutrients and grazing levels on heather moorland: changes in Calluna dominance and consequences for community composition. J. Ecol. 93, 990–1004 (2005).
Lind, E. M. et al. Increased grassland arthropod production with mammalian herbivory and eutrophication: a test of mediation pathways. Ecology 98, 3022–3033 (2017).
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Trabucco, A., Zomer, R. J., Bossio, D. A., van Straaten, O. & Verchot, L. V. Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. 126, 81–97 (2008).
Dentener, F. J. Global Maps of Atmospheric Nitrogen Deposition, 1860, 1993, and 2050. Oak Ridge National Laboratory Distributed Active Archive Center.  https://doi.org/10.3334/ORNLDAAC/830 (2006).
Borer, E. T. et al. Environmental Data Initiative https://doi.org/10.6073/pasta/a318fe0fb11eb43c1a2c8233b2e3494f (2020).

Auteurs

E T Borer (ET)

Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA. borer@umn.edu.

W S Harpole (WS)

Helmholtz Center for Environmental Research - UFZ, Department of Physiological Diversity, Permoserstrasse 15, 04318, Leipzig, Germany.
German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103, Leipzig, Germany.
Martin Luther University Halle-Wittenberg, am Kirchtor 1, 06108, Halle (Saale), Germany.

P B Adler (PB)

Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA.

C A Arnillas (CA)

Department of Physical and Environmental Sciences, University of Toronto - Scarborough, Toronto, ON, Canada.

M N Bugalho (MN)

Centre for Applied Ecology (CEABN-InBIO), School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, Portugal.

M W Cadotte (MW)

Department of Biological Sciences, University of Toronto - Scarborough, Toronto, ON, Canada.

M C Caldeira (MC)

Forest Research Centre, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, Portugal.

S Campana (S)

IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina.

C R Dickman (CR)

School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.

T L Dickson (TL)

Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA.

I Donohue (I)

Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.

A Eskelinen (A)

Helmholtz Center for Environmental Research - UFZ, Department of Physiological Diversity, Permoserstrasse 15, 04318, Leipzig, Germany.
German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103, Leipzig, Germany.
Department of Ecology & Genetics, University of Oulu, Oulu, Finland.

J L Firn (JL)

School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, QLD, Australia.

P Graff (P)

IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina.

D S Gruner (DS)

Department of Entomology, University of Maryland, College Park, MD, USA.

R W Heckman (RW)

Department of Biology, University of North Carolina, Chapel Hill, NC, USA.
Department of Integrative Biology, University of Texas, Austin, TX, USA.

A M Koltz (AM)

Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.

K J Komatsu (KJ)

Smithsonian Environmental Research Center, Edgewater, MD, USA.

L S Lannes (LS)

Department of Biology and Animal Sciences, São Paulo State University - UNESP, São Paulo, Brazil.

A S MacDougall (AS)

Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.

J P Martina (JP)

Department of Biology, Texas State University, San Marcos, TX, USA.

J L Moore (JL)

School of Biological Sciences, Monash University, Clayton Campus, Clayton, VIC, Australia.

B Mortensen (B)

Department of Biology, Benedictine College, Atchison, KS, USA.

R Ochoa-Hueso (R)

Department of Biology, IVAGRO, University of Cádiz, Cádiz, Spain.

H Olde Venterink (H)

Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium.

S A Power (SA)

Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.

J N Price (JN)

Institute of Land, Water and Society, Charles Sturt University, Albury, NSW, Australia.

A C Risch (AC)

Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland.

M Sankaran (M)

National Centre for Biological Sciences, TIFR, Bengaluru, India.
School of Biology, University of Leeds, Leeds, UK.

M Schütz (M)

Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland.

J Sitters (J)

Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium.

C J Stevens (CJ)

Lancaster Environment Centre, Lancaster University, Lancaster, UK.

R Virtanen (R)

Department of Ecology & Genetics, University of Oulu, Oulu, Finland.

P A Wilfahrt (PA)

Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA.
Department of Disturbance Ecology, University of Bayreuth, Bayreuth, Germany.

E W Seabloom (EW)

Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA.

Articles similaires

Humans Meals Time Factors Female Adult

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Populus Soil Microbiology Soil Microbiota Fungi
Humans Male Female Aged Middle Aged

Classifications MeSH