Anti-inflammatory and anticancer activities of Naringenin-loaded liquid crystalline nanoparticles in vitro.
Naringenin
anti-inflammatory
liquid crystalline nanoparticles
lung cancer
migration
proliferation
Journal
Journal of food biochemistry
ISSN: 1745-4514
Titre abrégé: J Food Biochem
Pays: United States
ID NLM: 7706045
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
20
08
2020
revised:
23
10
2020
accepted:
02
11
2020
pubmed:
30
11
2020
medline:
9
7
2021
entrez:
29
11
2020
Statut:
ppublish
Résumé
In this study, we had developed Naringenin-loaded liquid crystalline nanoparticles (LCNs) and investigated the anti-inflammatory and anticancer activities of Naringenin-LCNs against human airway epithelium-derived basal cells (BCi-NS1.1) and human lung epithelial carcinoma (A549) cell lines, respectively. The anti-inflammatory potential of Naringenin-LCNs evaluated by qPCR revealed a decreased expression of IL-6, IL-8, IL-1β, and TNF-α in lipopolysaccharide-induced BCi-NS1.1 cells. The activity of LCNs was comparable to the positive control drug Fluticasone propionate (10 nM). The anticancer activity was studied by evaluating the antiproliferative (MTT and trypan blue assays), antimigratory (scratch wound healing assay, modified Boyden chamber assay, and immunoblot), and anticolony formation activity in A549 cells. Naringenin LCNs showed promising antiproliferative, antimigratory, and anticolony formation activities in A549 cells, in vitro. Therefore, based on our observations and results, we conclude that Naringenin-LCNs may be employed as a potential therapy-based intervention to ameliorate airway inflammation and to inhibit the progression of lung cancer. PRACTICAL APPLICATIONS: Naringenin was encapsulated into liquid crystalline nanoparticles, thus, attributing to their sustained-release nature. In addition, Naringenin-loaded LCNs efficiently reduced the levels of pro-inflammatory markers, namely, IL-1β, IL-6, TNF-α, and IL-8. In addition, the Naringenin-loaded LCNs also possess potent anticancer activity, when tested in the A549 cell line, as revealed by the inhibition of proliferation and migration of cells. They also attenuated colony formation and induced apoptosis in the A549 cells. The findings from our study could form the basis for future research that may be translated into an in vivo model to validate the possible therapeutic alternative for lung cancer using Naringenin-loaded LCNs. In addition, the applications of Naringenin-loaded LCNs as an intervention would be of great interest to biological, formulation and respiratory scientists and clinicians.
Substances chimiques
Anti-Inflammatory Agents
0
Flavanones
0
naringenin
HN5425SBF2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13572Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Ahmad, S., Ahmad, A., Schneider, K. B., & White, C. W. (2006). Cholesterol interferes with the MTT assay in human epithelial-like (A549) and endothelial (HLMVE and HCAE) cells. International Journal of Toxicology, 25(1), 17-23. https://doi.org/10.1080/10915810500488361
Apte, R. N., Dotan, S., Elkabets, M., White, M. R., Reich, E., Carmi, Y., Song, X., Dvozkin, T., Krelin, Y., & Voronov, E. (2006). The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer and Metastasis Reviews, 25(3), 387-408. https://doi.org/10.1007/s10555-006-9004-4
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. https://doi.org/10.3322/caac.21492
Cai, X., Ye, T., Liu, C., Lu, W., Lu, M., Zhang, J., Wang, M., & Cao, P. (2011). Luteolin induced G2 phase cell cycle arrest and apoptosis on non-small cell lung cancer cells. Toxicology in Vitro, 25(7), 1385-1391. https://doi.org/10.1016/j.tiv.2011.05.009
Chang, A. (2011). Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer, 71(1), 3-10. https://doi.org/10.1016/j.lungcan.2010.08.022
Chang, H.-L., Chang, Y.-M., Lai, S.-C., Chen, K.-M., Wang, K.-C., Chiu, T.-T., Chang, F.-H., & Hsu, L.-S. (2017). Naringenin inhibits migration of lung cancer cells via the inhibition of matrix metalloproteinases-2 and -9. Experimental and Therapeutic Medicine, 13(2), 739-744. https://doi.org/10.3892/etm.2016.3994
Chen, H.-W., Lee, J.-Y., Huang, J.-Y., Wang, C.-C., Chen, W.-J., Su, S.-F., Huang, C.-W., Ho, C.-C., Chen, J. J., Tsai, M.-F., Yu, S.-L., & Yang, P.-C. (2008). Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Research, 68(18), 7428-7438. https://doi.org/10.1158/0008-5472.CAN-07-6734
Chin, L. H., Hon, C. M., Chellappan, D. K., Chellian, J., Madheswaran, T., Zeeshan, F., Awasthi, R., Aljabali, A. A. A., Tambuwala, M. M., Dureja, H., Negi, P., Kapoor, D. N., Goyal, R., Paudel, K. R., Satija, S., Gupta, G., Hsu, A., Wark, P., Mehta, M., … Dua, K. (2020). Molecular mechanisms of action of Naringenin in chronic airway diseases. European Journal of Pharmacology, 879, 173139. https://doi.org/10.1016/j.ejphar.2020.173139
Du, G., Jin, L., Han, X., Song, Z., Zhang, H., & Liang, W. (2009). Naringenin: A potential immunomodulator for inhibiting lung fibrosis and metastasis. Cancer Research, 69(7), 3205-3212. https://doi.org/10.1158/0008-5472.CAN-08-3393
Dua, K., Wadhwa, R., Singhvi, G., Rapalli, V., Shukla, S. D., Shastri, M. D., Gupta, G., Satija, S., Mehta, M., Khurana, N., Awasthi, R., Maurya, P. K., Thangavelu, L., S, R., Tambuwala, M. M., Collet, T., Hansbro, P. M., & Chellappan, D. K. (2019). The potential of siRNA based drug delivery in respiratory disorders: Recent advances and progress. Drug Development Research, 80(6), 714-730. https://doi.org/10.1002/ddr.21571
El-Badrawy, M. K., Yousef, A. M., Shaalan, D., & Elsamanoudy, A. Z. (2014). Matrix metalloproteinase-9 expression in lung cancer patients and its relation to serum mmp-9 activity, pathologic type, and prognosis. Journal of Bronchology & Interventional Pulmonology, 21(4), 327-334. https://doi.org/10.1097/LBR.0000000000000094
Ertan, E., Soydinc, H., Yazar, A., Ustuner, Z., Tas, F., & Yasasever, V. (2011). Matrix metalloproteinase-9 decreased after chemotherapy in patients with non-small cell lung cancer. Tumori Journal, 97(3), 286-289. https://doi.org/10.1177/030089161109700305
Farago, A. F., Drapkin, B. J., Lopez-Vilarino de Ramos, J. A., Galmarini, C. M., Núñez, R., Kahatt, C., & Paz-Ares, L. (2019). ATLANTIS: A Phase III study of lurbinectedin/doxorubicin versus topotecan or cyclophosphamide/doxorubicin/vincristine in patients with small-cell lung cancer who have failed one prior platinum-containing line. Future Oncology, 15(3), 231-239. https://doi.org/10.2217/fon-2018-0597
Garon, E. B., Chih-Hsin Yang, J., & Dubinett, S. M. (2020). The role of interleukin 1β in the pathogenesis of lung cancer. JTO Clinical and Research Reports, 1(1), 100001. https://doi.org/10.1016/j.jtocrr.2020.100001
Gomes, M., Teixeira, A. L., Coelho, A., Araújo, A., & Medeiros, R. (2014). The role of inflammation in lung cancer. In B. Aggarwal, B. Sung, S. Gupta (Eds.), Inflammation and cancer (pp. 1-23). Basel: Springer.
Gottschlich, A., Endres, S., & Kobold, S. (2018). Can we use interleukin-1β blockade for lung cancer treatment? Translational Lung Cancer Research, 7(Suppl 2), S160-S164. https://doi.org/10.21037/tlcr.2018.03.15
Gour, R., Ahmad, F., Prajapati, S. K., Giri, S. K., Karna, S. K. L., Kartha, K. R., & Pokharel, Y. R. (2019). Synthesis of novel S-linked dihydroartemisinin derivatives and evaluation of their anticancer activity. European Journal of Medicinal Chemistry, 178, 552-570. https://doi.org/10.1016/j.ejmech.2019.06.018
Gupta, S. C., Kannappan, R., Reuter, S., Kim, J. H., & Aggarwal, B. B. (2011). Chemosensitization of tumors by resveratrol. Annals of the New York Academy of Sciences, 1215, 150-160. https://doi.org/10.1111/j.1749-6632.2010.05852.x
He, W., Zhang, H., Wang, Y., Zhou, Y., Luo, Y., Cui, Y., Jiang, N., Jiang, W., Wang, H., Xu, D. I., Li, S., Wang, Z., Chen, Y., Sun, Y. U., Zhang, Y., Tseng, H.-R., Zou, X., Wang, L., & Ke, Z. (2018). CTHRC1 induces non-small cell lung cancer (NSCLC) invasion through upregulating MMP-7/MMP-9. BMC Cancer, 18(1), 400. https://doi.org/10.1186/s12885-018-4317-6
Hermenean, A., Ardelean, A., Stan, M., Hadaruga, N., Mihali, C.-V., Costache, M., & Dinischiotu, A. (2014). Antioxidant and hepatoprotective effects of Naringenin and its β-cyclodextrin formulation in mice intoxicated with carbon tetrachloride: A comparative study. Journal of Medicinal Food, 17(6), 670-677. https://doi.org/10.1089/jmf.2013.0007
Itoh, Y., & Nagase, H. (2002). Matrix metalloproteinases in cancer. Essays in Biochemistry, 38, 21-36. https://doi.org/10.1042/bse0380021
Jain, S., Heeralal, B., Swami, R., Swarnakar, N. K., & Kushwah, V. (2018). Improved oral bioavailability, therapeutic efficacy, and reduced toxicity of tamoxifen-loaded liquid crystalline nanoparticles. AAPS PharmSciTech, 19(1), 460-469. https://doi.org/10.1208/s12249-017-0851-9
Ji, P., Yu, T., Liu, Y., Jiang, J., Xu, J., Zhao, Y., & Wu, C. (2016). Naringenin-loaded solid lipid nanoparticles: Preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Design, Development and Therapy, 10, 911-925.
Jin, C. Y., Park, C., Hwang, H. J., Kim, G. Y., Choi, B. T., Kim, W. J., & Choi, Y. H. (2011). Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells. Molecular Nutrition & Food Research, 55(2), 300-309. https://doi.org/10.1002/mnfr.201000024
Jun, M. Y., Karki, R., Paudel, K. R., Sharma, B. R., Adhikari, D., & Kim, D. W. (2016). Alkaloid rich fraction from Nelumbo nucifera targets VSMC proliferation and migration to suppress restenosis in balloon-injured rat carotid artery. Atherosclerosis, 248, 179-189. https://doi.org/10.1016/j.atherosclerosis.2016.03.020
Kanaze, F., Bounartzi, M., Georgarakis, M., & Niopas, I. (2007). Pharmacokinetics of the citrus flavanone aglycones hesperetin and Naringenin after single oral administration in human subjects. European Journal of Clinical Nutrition, 61(4), 472-477. https://doi.org/10.1038/sj.ejcn.1602543
Kayacan, O., Karnak, D., Beder, S., Güllü, E., Tutkak, H., Senler, F. Ç., & Köksal, D. (2006). Impact of TNF-α and IL-6 levels on development of cachexia in newly diagnosed NSCLC patients. American Journal of Clinical Oncology, 29(4), 328-335.
Kenmotsu, H., Yoh, K., Mori, K., Ono, A., Baba, T., Fujiwara, Y., & Kato, T. (2019). Phase II study of nab-paclitaxel + carboplatin for patients with non-small-cell lung cancer and interstitial lung disease. Cancer Science, 110(12), 3738-3745. https://doi.org/10.1111/cas.14217
Khan, A. W., Kotta, S., Ansari, S. H., Sharma, R. K., & Ali, J. (2015). Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: Design, characterization, in vitro and in vivo evaluation. Drug Delivery, 22(4), 552-561.
Kim, R. Y., Pinkerton, J. W., Essilfie, A. T., Robertson, A. A. B., Baines, K. J., Brown, A. C., Mayall, J. R., Ali, M. K., Starkey, M. R., Hansbro, N. G., Hirota, J. A., Wood, L. G., Simpson, J. L., Knight, D. A., Wark, P. A., Gibson, P. G., O'Neill, L. A. J., Cooper, M. A., Horvat, J. C., & Hansbro, P. M. (2017). Role for NLRP3 inflammasome-mediated, IL-1β-dependent responses in severe, steroid-resistant asthma. American Journal of Respiratory and Critical Care Medicine, 196(3), 283-297. https://doi.org/10.1164/rccm.201609-1830OC
Koç, M., Ediger, D., Budak, F., Karadağ, M., Oral, H. B., Uzaslan, E., Ege, E., & Gözü, R. O. (2006). Matrix metalloproteinase-9 (MMP-9) elevated in serum but not in bronchial lavage fluid in patients with lung cancer. Tumori Journal, 92(2), 149-154. https://doi.org/10.1177/030089160609200211
Liu, G., Cooley, M. A., Jarnicki, A. G., Hsu, A.-Y., Nair, P. M., Haw, T. J., Fricker, M., Gellatly, S. L., Kim, R. Y., Inman, M. D., Tjin, G., Wark, P. A. B., Walker, M. M., Horvat, J. C., Oliver, B. G., Argraves, W. S., Knight, D. A., Burgess, J. K., & Hansbro, P. M. (2016). Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases. JCI Insight, 1(9). https://doi.org/10.1172/jci.insight.86380e86380
Luo, Y.-L., Zhang, C.-C., Li, P.-B., Nie, Y.-C., Wu, H., Shen, J.-G., & Su, W.-W. (2012). Naringin attenuates enhanced cough, airway hyperresponsiveness and airway inflammation in a guinea pig model of chronic bronchitis induced by cigarette smoke. International Immunopharmacology, 13(3), 301-307. https://doi.org/10.1016/j.intimp.2012.04.019
Madheswaran, T., Kandasamy, M., Bose, R. J., & Karuppagounder, V. (2019). Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discovery Today, 24(7), 1405-1412. https://doi.org/10.1016/j.drudis.2019.05.004
Malyla, V., Paudel, K. R., Shukla, S. D., Donovan, C., Wadhwa, R., Pickles, S., Chimankar, V., Sahu, P., Bielefeldt-Ohmann, H., Bebawy, M., Hansbro, P. M., & Dua, K. (2020). Recent advances in experimental animal models of lung cancer. Future Medicinal Chemistry, 12(7), 567-570. https://doi.org/10.4155/fmc-2019-0338
Manandhar, B., Paudel, K. R., Sharma, B., & Karki, R. (2018). Phytochemical profile and pharmacological activity of Aegle marmelos Linn. Journal of Integrative Medicine, 16(3), 153-163. https://doi.org/10.1016/j.joim.2018.04.007
Matanić, D., Beg-Zec, Z., Stojanović, D., Matakorić, N., Flego, V., & Milevoj-Ribić, F. (2003). Cytokines in patients with lung cancer. Scandinavian Journal of Immunology, 57(2), 173-178. https://doi.org/10.1046/j.1365-3083.2003.01205.x
Mehta, M., Dhanjal, D. S., Paudel, K. R., Singh, B., Gupta, G., Rajeshkumar, S., Thangavelu, L., Tambuwala, M. M., Bakshi, H. A., Chellappan, D. K., Pandey, P., Dureja, H., Charbe, N. B., Singh, S. K., Shukla, S. D., Nammi, S., Aljabali, A. A., Wich, P. R., Hansbro, P. M., … Dua, K. (2020). Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: An update. Inflammopharmacology, 28(4), 795-817. https://doi.org/10.1007/s10787-020-00698-3
Murgia, S., Biffi, S., & Mezzenga, R. (2020). Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Current Opinion in Colloid & Interface Science, 48, 28-39. https://doi.org/10.1016/j.cocis.2020.03.006
Nguyen-Ngo, C., Willcox, J. C., & Lappas, M. (2019). Anti-diabetic, anti-inflammatory, and anti-oxidant effects of naringenin in an in vitro human model and an in vivo murine model of gestational diabetes mellitus. Molecular Nutrition & Food Research, 63(19), 1900224. https://doi.org/10.1002/mnfr.201900224
Panth, N., Manandhar, B., & Paudel, K. R. (2017). Anticancer activity of Punica granatum (Pomegranate): A review. Phytotherapy Research, 31(4), 568-578. https://doi.org/10.1002/ptr.5784
Panth, N., Paudel, K. R., & Karki, R. (2016). Phytochemical profile and biological activity of Juglans regia. Journal of Integrative Medicine, 14(5), 359-373. https://doi.org/10.1016/s2095-4964(16)60274-1
Parashar, P., Tripathi, C. B., Arya, M., Kanoujia, J., Singh, M., Yadav, A., Kumar, A., Guleria, A., & Saraf, S. A. (2018). Biotinylated Naringenin intensified anticancer effect of gefitinib in urethane-induced lung cancer in rats: Favourable modulation of apoptotic regulators and serum metabolomics. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup3), S598-S610. https://doi.org/10.1080/21691401.2018.1505738
Paudel, K. R., Karki, R., & Kim, D.-W. (2016). Cepharanthine inhibits in vitro VSMC proliferation and migration and vascular inflammatory responses mediated by RAW264. 7. Toxicology in Vitro, 34, 16-25. https://doi.org/10.1016/j.tiv.2016.03.010
Paudel, K. R., & Kim, D. W. (2020). Microparticles-mediated vascular inflammation and its amelioration by antioxidant activity of baicalin. Antioxidants, 9(9), 890. https://doi.org/10.3390/antiox9090890
Paudel, K. R., Lee, U. W., & Kim, D. W. (2016). Chungtaejeon, a Korean fermented tea, prevents the risk of atherosclerosis in rats fed a high-fat atherogenic diet. Journal of Integrative Medicine, 14(2), 134-142. https://doi.org/10.1016/s2095-4964(16)60249-2
Paudel, K. R., & Panth, N. (2015). Phytochemical profile and biological activity of Nelumbo nucifera. Evidence-Based Complementary and Alternative Medicine: Ecam, 2015, 789124. https://doi.org/10.1155/2015/789124
Prasher, P., Sharma, M., Mehta, M., Paudel, K. R., Satija, S., Chellappan, D. K., Dureja, H., Gupta, G., Tambuwala, M. M., Negi, P., Wich, P. R., Hansbro, N. G., Hansbro, P. M., & Dua, K. (2020). Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective. Chemico-biological Interactions, 325, 109125. https://doi.org/10.1016/j.cbi.2020.109125
Raza, S. S., Khan, M. M., Ahmad, A., Ashafaq, M., Islam, F., Wagner, A. P., Safhi, M. M., & Islam, F. (2013). Neuroprotective effect of Naringenin is mediated through suppression of NF-κB signaling pathway in experimental stroke. Neuroscience, 230, 157-171. https://doi.org/10.1016/j.neuroscience.2012.10.041
Ridker, P. M., MacFadyen, J. G., Thuren, T., Everett, B. M., Libby, P., Glynn, R. J., Ridker, P., Lorenzatti, A., Krum, H., Varigos, J., Siostrzonek, P., Sinnaeve, P., Fonseca, F., Nicolau, J., Gotcheva, N., Genest, J., Yong, H., Urina-Triana, M., Milicic, D., … Glynn, R. J. (2017). Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: Exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet, 390(10105), 1833-1842. https://doi.org/10.1016/s0140-6736(17)32247-x
Ryan, B. M., Pine, S. R., Chaturvedi, A. K., Caporaso, N., & Harris, C. C. (2014). A combined prognostic serum interleukin-8 and interleukin-6 classifier for stage 1 lung cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Journal of Thoracic Oncology, 9(10), 1494-1503. https://doi.org/10.1097/jto.0000000000000278
Schiller, J. H., Harrington, D., Belani, C. P., Langer, C., Sandler, A., Krook, J., Zhu, J., & Johnson, D. H. (2002). Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. New England Journal of Medicine, 346(2), 92-98. https://doi.org/10.1056/NEJMoa011954
Sharma, P., Mehta, M., Dhanjal, D. S., Kaur, S., Gupta, G., Singh, H., Thangavelu, L., Rajeshkumar, S., Tambuwala, M., Bakshi, H. A., Chellappan, D. K., Dua, K., & Satija, S. (2019). Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chemico-Biological Interactions, 309, 108720. https://doi.org/10.1016/j.cbi.2019.06.033
Shulman, M., Cohen, M., Soto-Gutierrez, A., Yagi, H., Wang, H., Goldwasser, J., & Nahmias, Y. (2011). Enhancement of Naringenin bioavailability by complexation with hydroxypropyl-β-cyclodextrin. [corrected]. PLoS One, 6(4), e18033. https://doi.org/10.1371/journal.pone.0018033
Singh, Y., Gupta, G., Sharma, R., Matta, Y., Mishra, A., Pinto, T. d. J. A., & Dua, K. (2018). Embarking effect of ACE2-angiotensin 1-7/mas receptor Axis in benign prostate hyperplasia. Critical Reviews in Eukaryotic Gene Expression, 28(2), 115-124. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2018021364
Wadhwa, R., Aggarwal, T., Thapliyal, N., Chellappan, D.K., Gupta, G., Gulati, M., & Hansbro, P. M. (2019). Chapter 5 - Nanoparticle-based drug delivery for chronic obstructive pulmonary disorder and asthma: Progress and challenges. In: P. K. Maurya & S. Singh (Eds.). Nanotechnology in modern animal biotechnology (pp. 59-73). Amsterdam: Elsevier.
Yang, J., Li, Q., Zhou, X., Kolosov, V., & Perelman, J. (2011). Naringenin attenuates mucous hypersecretion by modulating reactive oxygen species production and inhibiting NF-κB activity via EGFR-PI3K-Akt/ERK MAPKinase signaling in human airway epithelial cells. Molecular and Cellular Biochemistry, 351(1-2), 29-40. https://doi.org/10.1007/s11010-010-0708-y
Yong, D. O. C., Saker, S. R., Wadhwa, R., Chellappan, D. K., Madheswaran, T., Panneerselvam, J., & Pillay, V. (2019). Preparation, characterization and in-vitro efficacy of quercetin loaded liquid crystalline nanoparticles for the treatment of asthma. Journal of Drug Delivery Science and Technology, 54, 101297.
Zarogoulidis, P., Chatzaki, E., Porpodis, K., Domvri, K., Hohenforst-Schmidt, W., Goldberg, E. P., & Zarogoulidis, K. (2012). Inhaled chemotherapy in lung cancer: Future concept of nanomedicine. International Journal of Nanomedicine, 7, 1551-1572. https://doi.org/10.2147/IJN.S29997
Zhang, L., Song, L. I., Zhang, P., Liu, T., Zhou, L. I., Yang, G., Lin, R., & Zhang, J. (2015). Solubilities of naringin and Naringenin in different solvents and dissociation constants of Naringenin. Journal of Chemical & Engineering Data, 60(3), 932-940. https://doi.org/10.1021/je501004g