Horizontal acquisition of Symbiodiniaceae in the Anemonia viridis (Cnidaria, Anthozoa) species complex.
ITS2
RAD-Seq
clonality
cryptic species
microsatellite
symbiosis
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
18
06
2020
revised:
29
10
2020
accepted:
13
11
2020
pubmed:
30
11
2020
medline:
22
6
2021
entrez:
29
11
2020
Statut:
ppublish
Résumé
All metazoans are in fact holobionts, resulting from the association of several organisms, and organismal adaptation is then due to the composite response of this association to the environment. Deciphering the mechanisms of symbiont acquisition in a holobiont is therefore essential to understanding the extent of its adaptive capacities. In cnidarians, some species acquire their photosynthetic symbionts directly from their parents (vertical transmission) but may also acquire symbionts from the environment (horizontal acquisition) at the adult stage. The Mediterranean snakelocks sea anemone, Anemonia viridis (Forskål, 1775), passes down symbionts from one generation to the next by vertical transmission, but the capacity for such horizontal acquisition is still unexplored. To unravel the flexibility of the association between the different host lineages identified in A. viridis and its Symbiodiniaceae, we genotyped both the animal hosts and their symbiont communities in members of host clones in five different locations in the North Western Mediterranean Sea. The composition of within-host-symbiont populations was more dependent on the geographical origin of the hosts than their membership to a given lineage or even to a given clone. Additionally, similarities in host-symbiont communities were greater among genets (i.e. among different clones) than among ramets (i.e. among members of the same given clonal genotype). Taken together, our results demonstrate that A. viridis may form associations with a range of symbiotic dinoflagellates and suggest a capacity for horizontal acquisition. A mixed-mode transmission strategy in A. viridis, as we posit here, may help explain the large phenotypic plasticity that characterizes this anemone.
Banques de données
Dryad
['10.5061/dryad.sj3tx963j']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
391-405Informations de copyright
© 2020 John Wiley & Sons Ltd.
Références
Abdoullaye, D., Acevedo, I., Adebayo, A. A., Behrmann-Godel, J., Benjamin, R. C., Bock, D. G., Born, C., Brouat, C., Caccone, A., Cao, L. Z., Casado-Amezúa, P., Catanéo, J., Correa-Ramirez, M. M., Cristescu, M. E., Dobigny, G., Egbosimba, E. E., Etchberger, L. K., Fan, B., & Fields, P. D. … Zhou, Y. (2010). Permanent genetic resources added to molecular ecology resources database 1 August 2009-30 September 2009. Molecular Ecology Resources, 10(1), 232-236. https://doi.org/10.1111/j.1755-0998.2009.02796.x
Ayre, D. J. (1984). Effects of environment and population density on the sea anemone Actinia tenebrosa. Marine and Freshwater Research, 35(6), 735-746. https://doi.org/10.1071/mf9840735
Ayre, D. J. (1985). Localized adaptation of clones of the sea anemone Actinia Tenebrosa. Evolution, 39(6), 1250-1260. https://doi.org/10.1111/j.1558-5646.1985.tb05691.x
Ayre, D. J., & Grosberg, R. K. (1995). Aggression, habituation, and clonal coexistence in the sea anemone Anthopleura elegantissima. The American Naturalist, 146(3), 427-453. https://doi.org/10.1086/285808
Bailleul, D., Stoeckel, S., & Arnaud-Haond, S. (2016). RClone: A package to identify MultiLocus Clonal Lineages and handle clonal data sets in R. Methods in Ecology and Evolution, 7(8), 966-970. https://doi.org/10.1111/2041-210X.12550
Baird, A. H., Guest, J. R., & Willis, B. L. (2009). Systematic and biogeographical patterns in the reproductive biology of Scleractinian corals. Annual Review of Ecology, Evolution, and Systematics, 40(1), 551-571. https://doi.org/10.1146/annurev.ecolsys.110308.120220
Baumann, P. (2005). Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annual Review of Microbiology, 59(1), 155-189. https://doi.org/10.1146/annurev.micro.59.030804.121041
Baums, I. B., Devlin-Durante, M. K., & LaJeunesse, T. C. (2014). New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Molecular Ecology, 23(17), 4203-4215. https://doi.org/10.1111/mec.12788
Borell, E. M., Steinke, M., Horwitz, R., & Fine, M. (2014). Increasing pCO2 correlates with low concentrations of intracellular dimethylsulfoniopropionate in the sea anemone Anemonia viridis. Ecology and Evolution, 4(4), 441-449. https://doi.org/10.1002/ece3.946
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut, A., & Drummond, A. J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLOS Computational Biology, 10(4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537
Boulotte, N. M., Dalton, S. J., Carroll, A. G., Harrison, P. L., Putnam, H. M., Peplow, L. M., & van Oppen, M. J. (2016). Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. The ISME Journal, 10(11), 2693-2701. https://doi.org/10.1038/ismej.2016.54
Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., & Coissac, E. (2016). obitools: A unix -inspired software package for DNA metabarcoding. Molecular Ecology Resources, 16(1), 176-182. https://doi.org/10.1111/1755-0998.12428
Brading, P., Warner, M. E., Davey, P., Smith, D. J., Achterberg, E. P., & Suggett, D. J. (2011). Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnology and Oceanography, 56(3), 927-938. https://doi.org/10.4319/lo.2011.56.3.0927
Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A., & RoyChoudhury, A. (2012). Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Molecular Biology and Evolution, 29(8), 1917-1932. https://doi.org/10.1093/molbev/mss086
Byler, K. A., Carmi-Veal, M., Fine, M., & Goulet, T. L. (2013). Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS One, 8(3), e59596. https://doi.org/10.1371/journal.pone.0059596
Bythell, J. C., Douglas, A. E., Sharp, V. A., Searle, J. B., & Brown, B. E. (1997). Algal genotype and photoacclimatory responses of the symbiotic alga Symbiodinium in natural populations of the sea anemone Anemonia viridis. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264(1386), 1277-1282. https://doi.org/10.1098/rspb.1997.0176
Casado-Amezúa, P., Machordom, A., Bernardo, J., & González-Wangüemert, M. (2014). New insights into the genetic diversity of zooxanthellae in Mediterranean anthozoans. Symbiosis, 63(1), 41-46. https://doi.org/10.1007/s13199-014-0286-y
Catanéo, J., Ortu, M.-F., Furla, P., & Forcioli, D. (2009). Development of microsatellite loci from a Mediterranean symbiotic gorgonian, Eunicella singularis (Cnidaria, Anthozoa), and its temperate-A Symbiodinium. Molecular Ecology Resources, 10, 232-236. https://doi.org/10.1111/j.1755-0998.2009.02796.x
Chifman, J., & Kubatko, L. (2014). Quartet inference from SNP data under the coalescent model. Bioinformatics, 30(23), 3317-3324. https://doi.org/10.1093/bioinformatics/btu530
Clavijo, J. M., Donath, A., Serôdio, J., & Christa, G. (2018). Polymorphic adaptations in metazoans to establish and maintain photosymbioses. Biological Reviews, 93(4), 2006-2020. https://doi.org/10.1111/brv.12430
Coffroth, M. A., & Santos, S. R. (2005). Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist, 156(1), 19-34. https://doi.org/10.1016/j.protis.2005.02.004
Cornuet, J.-M., Ravigué, V., & Estoup, A. (2010). Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v.1.0). BMC Bioinformatics, 11. https://doi.org/10.1186/1471-2105-11-401
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., & Durbin, R. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. https://doi.org/10.1093/bioinformatics/btr330
Davy, S. K., Allemand, D., & Weis, V. M. (2012). Cell biology of cnidarian-dinoflagellate symbiosis. Microbiology and Molecular Biology Reviews, 76(2), 229-261. https://doi.org/10.1128/MMBR.05014-11
Davy, S. K., Lucas, I. A. N., & Turner, J. R. (1996). Carbon budgets in temperate anthozoan-dinoflagellate symbioses. Marine Biology, 126(4), 773-783. https://doi.org/10.1007/BF00351344
Eaton, D. A. R. (2014). PyRAD: Assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics, 30(13), 1844-1849. https://doi.org/10.1093/bioinformatics/btu121
Ebert, D. (2013). The epidemiology and evolution of symbionts with mixed-mode transmission. Annual Review of Ecology, Evolution, and Systematics, 44(1), 623-643. https://doi.org/10.1146/annurev-ecolsys-032513-100555
Forskål, P. (1775). Descriptiones animalium, avium, amphibiorum, piscium, insectorum, vermium; quae in itinere orientali observait. : Mölleri, Havniae.
Frichot, E., & François, O. (2015). LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution, 6(8), 925-929. https://doi.org/10.1111/2041-210X.12382
Gélin, P., Fauvelot, C., Mehn, V., Bureau, S., Rouzé, H., & Magalon, H. (2017). Superclone expansion, long-distance clonal dispersal and local genetic structuring in the coral Pocillopora damicornis type β in reunion Island, South Western Indian Ocean. PLOS ONE, 12(1), e0169692. https://doi.org/10.1371/journal.pone.0169692
Goudet, J., & Jombart, T. (2015). Hierfstat: Estimation and tests of hierarchical F-statistics. R Package Version 0.04-22.
Harper, J. L. (1977). Population biology of plants. : Academic Press. CABDirect2.
Hartle-Mougiou, K., D’Angelo, C., Smith, E. G., Burt, J., West, P., & Wiedenmann, J. (2012). Diversity of zooxanthellae from corals and sea anemones after long-term aquarium culture. Journal of the Marine Biological Association of the United Kingdom, 92(4), 687-691. https://doi.org/10.1017/S0025315411001159
Henry, L. M., Peccoud, J., Simon, J.-C., Hadfield, J. D., Maiden, M. J. C., Ferrari, J., & Godfray, H. C. J. (2013). Horizontally transmitted symbionts and host colonization of ecological niches. Current Biology, 23(17), 1713-1717. https://doi.org/10.1016/j.cub.2013.07.029
Hipp, A. L. (2014). RADami: R package for phylogenetic analysis of RADseq data. R Package Version, 1-0.
Hoffmann, R. J. (1986). Variation in contribution of asexual reproduction to the genetic structure of populations of the sea anemone Metridium senile. Evolution, 40(2), 357-365. https://doi.org/10.1111/j.1558-5646.1986.tb00477.x
Howells, E. J., Bauman, A. G., Vaughan, G. O., Hume, B. C. C., Voolstra, C. R., & Burt, J. A. (2020). Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Molecular Ecology, 29(5), 899-911. https://doi.org/10.1111/mec.15372
Howells, E. J., Beltran, V. H., Larsen, N. W., Bay, L. K., Willis, B. L., & van Oppen, M. J. H. (2012). Coral thermal tolerance shaped by local adaptation of photosymbionts. Nature Climate Change, 2(2), 116-120. https://doi.org/10.1038/nclimate1330
Hume, B. C. C. (2019). didillysquat/SymPortal_framework: V0.2.7. Zenodo. 10.5281/zenodo.2620837
Hume, B. C. C., Smith, E. G., Ziegler, M., Warrington, H. J. M., Burt, J. A., LaJeunesse, T. C., & Voolstra, C. R. (2019). SymPortal: A novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Molecular Ecology Resources, 19(4), 1063-1080. https://doi.org/10.1111/1755-0998.13004
Jackson, J. B. C. (1986). Modes of dispersal of clonal benthic invertebrates: Consequences for species’ distributions and genetic structure of local populations. Bulletin of Marine Science, 39, 19.
Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014). Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2, e281. https://doi.org/10.7717/peerj.281
Kaufman, M. R., Ikeda, Y., Patton, C., van Dykhuizen, G., & Epel, D. (1998). Bacterial symbionts colonize the accessory Nidamental gland of the squid Loligo opalescens via horizontal transmission. The Biological Bulletin, 194(1), 36-43. https://doi.org/10.2307/1542511
LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R., & Santos, S. R. (2018). Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology, 28(16), 2570-2580.e6. https://doi.org/10.1016/j.cub.2018.07.008
Leaché, A. D., Fujita, M. K., Minin, V. N., & Bouckaert, R. R. (2014). Species delimitation using genome-wide SNP data. Systematic Biology, 63(4), 534-542. https://doi.org/10.1093/sysbio/syu018
Mackie, G. O. (1974). Locomotion, Flotation, and Dispersal. Leonard Muscatine Coelenterate Biology: Reviews and New Perspectives, (pp. 313-357). New York: Academic Press.
Magalon, H., Baudry, E., Husté, A., Adjeroud, M., & Veuille, M. (2006). High genetic diversity of the symbiotic dinoflagellates in the coral Pocillopora meandrina from the South Pacific. Marine Biology, 148(5), 913-922. https://doi.org/10.1007/s00227-005-0133-z
Mallien, C., Porro, B., Zamoum, T., Olivier, C., Wiedenmann, J., Furla, P., & Forcioli, D. (2017). Conspicuous morphological differentiation without speciation in Anemonia viridis (Cnidaria, Actiniaria). Systematics and Biodiversity, 16(3), 271-286. https://doi.org/10.1080/14772000.2017.1383948
Margulis, L., & R. Fester (Eds.) (1991). Symbiosis as a source of evolutionary innovation: Speciation and morphogenesis. MIT Press.
Miller, S. A., Dykes, D. D., & Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215. https://doi.org/10.1093/nar/16.3.1215
Moran, N. A., & Wernegreen, J. J. (2000). Lifestyle evolution in symbiotic bacteria: Insights from genomics. Trends in Ecology & Evolution, 15(8), 321-326. https://doi.org/10.1016/S0169-5347(00)01902-9
Muller-Parker, G., & Davy, S. K. (2005). Temperate and tropical algal-sea anemone symbioses. Invertebrate Biology, 104-123.
Neave, M. J., Rachmawati, R., Xun, L., Michell, C. T., Bourne, D. G., Apprill, A., & Voolstra, C. R. (2017). Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. The ISME Journal, 11(1), 186-200. https://doi.org/10.1038/ismej.2016.95
Nelsen, M. P., & Gargas, A. (2008). Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytologist, 177(1), 264-275. https://doi.org/10.1111/j.1469-8137.2007.02241.x
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2016). vegan: Community Ecology Package. (Version R package version 2.4-0.). Retrieved from https://CRAN.R-project.org/package=vegan
Padilla-Gamiño, J. L., Pochon, X., Bird, C., Concepcion, G. T., & Gates, R. D. (2012). From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata. PLoS One, 7(6), e38440. https://doi.org/10.1371/journal.pone.0038440
Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289-290. https://doi.org/10.1093/bioinformatics/btg412
Parkinson, J. E., & Baums, I. B. (2014). The extended phenotypes of marine symbioses: Ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations. Frontiers in Microbiology, 5, https://doi.org/10.3389/fmicb.2014.00445
Pembleton, L. W., Cogan, N. O. I., & Forster, J. W. (2013). StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Molecular Ecology Resources, 13(5), 946-952. https://doi.org/10.1111/1755-0998.12129
Pettay, D. T., Wham, D. C., Pinzón, J. H., & Lajeunesse, T. C. (2011). Genotypic diversity and spatial-temporal distribution of Symbiodinium clones in an abundant reef coral. Molecular Ecology, 20(24), 5197-5212. https://doi.org/10.1111/j.1365-294X.2011.05357.x
Porro, B., Mallien, C., Hume, B. C. C., Pey, A., Aubin, E., Christen, R., Voolstra, C. R., Furla, P., & Forcioli, D. (2019). The many faced symbiotic snakelocks anemone (Anemonia viridis, Anthozoa): Host and symbiont genetic differentiation among colour morphs. Heredity, 124(2), 351-366. https://doi.org/10.1038/s41437-019-0266-3
Quigley, K. M., Strader, M. E., & Matz, M. V. (2018). Relationship between Acropora millepora juvenile fluorescence and composition of newly established Symbiodinium assemblage. PeerJ, 6, e5022. https://doi.org/10.7717/peerj.5022
Quigley, K. M., Willis, B. L., & Kenkel, C. D. (2019). Transgenerational inheritance of shuffled symbiont communities in the coral Montipora digitata. Scientific Reports, 9(1), 1-11. https://doi.org/10.1038/s41598-019-50045-y
R Core Team (2018). R: A Language and Environment for Statistical Computing (Version 3.5.1). R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
Reynolds, J. M., Bruns, B. U., Fitt, W. K., & Schmidt, G. W. (2008). Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proceedings of the National Academy of Sciences, 105(36), 13674-13678. https://doi.org/10.1073/pnas.0805187105
Richier, S., Furla, P., Plantivaux, A., Merle, P.-L., & Allemand, D. (2005). Symbiosis-induced adaptation to oxidative stress. Journal of Experimental Biology, 208(2), 277-285. https://doi.org/10.1242/jeb.01368
Roberty, S., Furla, P., & Plumier, J.-C. (2016). Differential antioxidant response between two Symbiodinium species from contrasting environments. Plant, Cell & Environment, 39(12), 2713-2724. https://doi.org/10.1111/pce.12825
Rohwer, F., Seguritan, V., Azam, F., & Knowlton, N. (2002). Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series, 243, 1-10. https://doi.org/10.3354/meps243001
Rowan, R., & Knowlton, N. (1995). Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proceedings of the National Academy of Sciences, 92(7), 2850-2853. https://doi.org/10.1073/pnas.92.7.2850
Sabourault, C., Ganot, P., Deleury, E., Allemand, D., & Furla, P. (2009). Comprehensive EST analysis of the symbiotic sea anemone, Anemonia viridis. BMC Genomics, 10(1), 333. https://doi.org/10.1186/1471-2164-10-333
Sauer, K. P. (1986). Strategien zeitlicher und räumlicher Einnischung. Verhandlungen Der Deutschen Zoologischen Gesellschaft, 79, 11-30.
Sauer, K. P., Müller, M., & Weber, M. (1986). Alloimmune memory for glycoproteid recognition molecules in sea anemones competing for space. Marine Biology, 92(1), 73-79. https://doi.org/10.1007/BF00392748
Savage, A. M., Goodson, M. S., Visram, S., Trapido-Rosenthal, H., Wiedenmann, J., & Douglas, A. E. (2002). Molecular diversity of symbiotic algae at the latitudinal margins of their distribution: Dinoflagellates of the genus Symbiodinium in corals and sea anemones. Marine Ecology Progress Series, 244, 17-26. https://doi.org/10.3354/meps244017
Schäfer, W. (1984). Fortpflanzung und Entwicklung von Anemonia sulcata (Anthozoa, Actiniaria). I: Fortpflanzungszyklus und Struktur der Oocyten vor und nach der Besamung. Helgoländer Meeresuntersuchungen, 38(2), 135-148.
Secord, D., & Muller-Parker, G. (2005). Symbiont distribution along a light gradient within an intertidal cave. Limnology and Oceanography, 50(1), 272-278. https://doi.org/10.4319/lo.2005.50.1.0272
Shick, J. M. (1991). A Functional Biology of Sea Anemones. Springer.
Silverstein, R. N., Cunning, R., & Baker, A. C. (2015). Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Global Change Biology, 21(1), 236-249. https://doi.org/10.1111/gcb.12706
Stat, M., Pochon, X., Cowie, R., & Gates, R. (2009). Specificity in communities of Symbiodinium in corals from Johnston Atoll. Marine Ecology Progress Series, 386, 83-96. https://doi.org/10.3354/meps08080
Stewart, F. J., Young, C. R., & Cavanaugh, C. M. (2008). Lateral symbiont acquisition in a maternally transmitted chemosynthetic clam endosymbiosis. Molecular Biology and Evolution, 25(4), 673-687. https://doi.org/10.1093/molbev/msn010
Suez, M., Behdenna, A., Brouillet, S., Graça, P., Higuet, D., & Achaz, G. (2016). MicNeSs: Genotyping microsatellite loci from a collection of (NGS) reads. Molecular Ecology Resources, 16(2), 524-533. https://doi.org/10.1111/1755-0998.12467
Suggett, D. J., Hall-Spencer, J. M., Rodolfo-Metalpa, R., Boatman, T. G., Payton, R., Tye Pettay, D., & Lawson, T. (2012). Sea anemones may thrive in a high CO2 world. Global Change Biology, 18(10), 3015-3025. https://doi.org/10.1111/j.1365-2486.2012.02767.x
Suggett, D. J., Warner, M. E., & Leggat, W. (2017). Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends in Ecology & Evolution, 32(10), 735-745. https://doi.org/10.1016/j.tree.2017.07.013
Suggett, D. J., Warner, M. E., Smith, D. J., Davey, P., Hennige, S., & Baker, N. R. (2008). Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) Phylotypes with different thermal Tolerances1. Journal of Psychology, 44(4), 948-956. https://doi.org/10.1111/j.1529-8817.2008.00537.x
Swofford, D. L. (1998). Phylogenetic analysis using parsimony (paup) (Version 4). Sinauer Associates.
Swofford, D. L. (2001). PAUP*: Phylogenetic Analysis Using Parsimony (and other methods) 4.0.b5.
Tchernov, D., Gorbunov, M. Y., de Vargas, C., Yadav, S. N., Milligan, A. J., Häggblom, M., & Falkowski, P. G. (2004). Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proceedings of the National Academy of Sciences of the United States of America, 101(37), 13531-13535. https://doi.org/10.1073/pnas.0402907101
Theis, K. R., Dheilly, N. M., Klassen, J. L., Brucker, R. M., Baines, J. F., Bosch, T. C. G., Cryan, J. F., Gilbert, S. F., Goodnight, C. J., Lloyd, E. A., Sapp, J., Vandenkoornhuyse, P., Zilber-Rosenberg, I., Rosenberg, E., & Bordenstein, S. R. (2016). Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. Msystems, 1(2), e00028-e116. https://doi.org/10.1128/mSystems.00028-16
Utrilla, O., Castro-Claros, J. D., Urra, J., Navas, F. D., & Salas, C. (2019). Reproduction of the anthozoan Anemonia sulcata (Pennant, 1777) in southern Spain: From asexual reproduction to putative maternal care. Marine Biology, 166(8), 111. https://doi.org/10.1007/s00227-019-3558-5
Ventura, P., Jarrold, M. D., Merle, P. L., Barnay-Verdier, S., Zamoum, T., Rodolfo-Metalpa, R., Calosi, P., & Furla, P. (2016). Resilience to ocean acidification: Decreased carbonic anhydrase activity in sea anemones under high pCO2 conditions. Marine Ecology Progress Series, 559, 257-263. https://doi.org/10.3354/meps11916
Visram, S., Wiedenmann, J., & Douglas, A. E. (2006). Molecular diversity of symbiotic algae of the genus Symbiodinium (Zooxanthellae) in cnidarians of the Mediterranean Sea. Journal of the Marine Biological Association of the UK, 86(06), 1281. https://doi.org/10.1017/S0025315406014299
Wiedenmann, J., Kraus, P., Funke, W., & Vogel, W. (2000). The relationship between different morphs of Anemonia aff. Sulcata evaluated by DNA fingerprinting (Anthozoa, Actinaria). Ophelia, 52(1), 57-64. https://doi.org/10.1080/00785236.1999.10409419
Wiedenmann, J., Röcker, C., & Funke, W. (1999). The morphs of Anemonia aff. Sulcata (Cnidaria, Anthozoa) in particular consideration of the ectodermal pigments. In J. Pfadenhauer (Ed.), Verhandlungen der Gesellschaft für Ökologie, Vol. 29 (pp. 497-503). Spektrum Akademischer Verlag.
Zheng, X. (2012). SNPRelate: Parallel computing toolset for genome-wide association studies (Version R package version 1.11.1).
Zilber-Rosenberg, I., & Rosenberg, E. (2008). Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiology Reviews, 32(5), 723-735. https://doi.org/10.1111/j.1574-6976.2008.00123.x