Generation of biological hypotheses by functional imaging links tumor hypoxia to radiation induced tissue inflammation/glucose uptake in head and neck cancer.
FDG PET
FMISO PET
Head and neck cancer
Hypoxia
Inflammation
Radiotherapy
Journal
Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
ISSN: 1879-0887
Titre abrégé: Radiother Oncol
Pays: Ireland
ID NLM: 8407192
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
17
07
2020
revised:
09
10
2020
accepted:
21
10
2020
pubmed:
1
12
2020
medline:
24
4
2021
entrez:
30
11
2020
Statut:
ppublish
Résumé
Positron emission tomography (PET) is a functional imaging modality which is able to deliver tracer specific biological information, e.g. about glucose uptake, inflammation or hypoxia of tumors. We performed a proof-of-principle study that used different tracers and expanded the analytical scope to non-tumor structures to evaluate tumor-host interactions. Based on a previously reported prospective imaging study on 50 patients treated with curative intent chemoradiation (CRT) for head and neck squamous cell carcinoma, PET-based hypoxia and normal tissue inflammation measured by repeat 18F-fluoromisonidazole (FMISO) PET and 18F-fluorodesoxyglucose (FDG) PET, respectively, were correlated using the Spearman correlation coefficient R. PET parameters determined before and during CRT (week 1, 2 and 5), were associated with local tumor control and overall survival. Tumor hypoxia at all measured times showed an inverse correlation with mid-treatment FDG-uptake of non-tumor affected oral (sub-)mucosa with R values between -0.35 and -0.6 (all p < 0.05). Mucosal FDG-uptake and mucosal hypoxia correlated positively but weaker (R values between 0.2 and 0.45). More tumor hypoxia in FMISO-PET (week 2) and less FDG-uptake of (sub-)mucosa in FDG-PET (week 4) were significantly associated with worse LC (FMISO TBR We report first clinical evidence that tumor hypoxia is inversely correlated with increased FDG-uptake during radiation, potentially expressing inflammation. This observation merits further research and may have important implication for future research on tumor hypoxia and radio-immunology. Our study demonstrates that functional imaging can be utilized to assess complex tumor-host interactions and generate novel biological insights in vivo vero.
Sections du résumé
BACKGROUND AND PURPOSE
Positron emission tomography (PET) is a functional imaging modality which is able to deliver tracer specific biological information, e.g. about glucose uptake, inflammation or hypoxia of tumors. We performed a proof-of-principle study that used different tracers and expanded the analytical scope to non-tumor structures to evaluate tumor-host interactions.
MATERIALS AND METHODS
Based on a previously reported prospective imaging study on 50 patients treated with curative intent chemoradiation (CRT) for head and neck squamous cell carcinoma, PET-based hypoxia and normal tissue inflammation measured by repeat 18F-fluoromisonidazole (FMISO) PET and 18F-fluorodesoxyglucose (FDG) PET, respectively, were correlated using the Spearman correlation coefficient R. PET parameters determined before and during CRT (week 1, 2 and 5), were associated with local tumor control and overall survival.
RESULTS
Tumor hypoxia at all measured times showed an inverse correlation with mid-treatment FDG-uptake of non-tumor affected oral (sub-)mucosa with R values between -0.35 and -0.6 (all p < 0.05). Mucosal FDG-uptake and mucosal hypoxia correlated positively but weaker (R values between 0.2 and 0.45). More tumor hypoxia in FMISO-PET (week 2) and less FDG-uptake of (sub-)mucosa in FDG-PET (week 4) were significantly associated with worse LC (FMISO TBR
CONCLUSION
We report first clinical evidence that tumor hypoxia is inversely correlated with increased FDG-uptake during radiation, potentially expressing inflammation. This observation merits further research and may have important implication for future research on tumor hypoxia and radio-immunology. Our study demonstrates that functional imaging can be utilized to assess complex tumor-host interactions and generate novel biological insights in vivo vero.
Identifiants
pubmed: 33252044
pii: S0167-8140(20)30877-X
doi: 10.1016/j.radonc.2020.10.030
pii:
doi:
Substances chimiques
Radiopharmaceuticals
0
Fluorodeoxyglucose F18
0Z5B2CJX4D
Misonidazole
8FE7LTN8XE
Glucose
IY9XDZ35W2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
204-211Informations de copyright
Copyright © 2020 Elsevier B.V. All rights reserved.