Effect of manganese, zinc, and copper on the biological and osteogenic properties of mesoporous bioactive glass nanoparticles.


Journal

Journal of biomedical materials research. Part A
ISSN: 1552-4965
Titre abrégé: J Biomed Mater Res A
Pays: United States
ID NLM: 101234237

Informations de publication

Date de publication:
08 2021
Historique:
revised: 09 11 2020
received: 01 09 2020
accepted: 28 11 2020
pubmed: 9 12 2020
medline: 13 1 2022
entrez: 8 12 2020
Statut: ppublish

Résumé

Mesoporous bioactive glass nanoparticles (MBGNs) have demonstrated promising properties for the local delivery of therapeutically active ions with the aim to improve their osteogenic properties. Manganese (Mn), zinc (Zn), and copper (Cu) ions have already shown promising pro-osteogenic properties. Therefore, the concentration-dependent impact of MBGNs (composition in mol%: 70 SiO

Identifiants

pubmed: 33289275
doi: 10.1002/jbm.a.37136
doi:

Substances chimiques

Manganese 42Z2K6ZL8P
Copper 789U1901C5
Zinc J41CSQ7QDS

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1457-1467

Informations de copyright

© 2020 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC.

Références

Nawaz Q, Rehman MAU, Burkovski A, et al. Synthesis and characterization of manganese containing mesoporous bioactive glass nanoparticles for biomedical applications. J Mater Sci Mater Med. 2018;29(5):64.
Wu C, Chang J. Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus. 2012;2(3):292-306.
Baino F, Hamzehlou S, Kargozar S. Bioactive glasses: where are we and where are we going? J Funct Biomater. 2018;9(1):25.
Kargozar S, Montazerian M, Hamzehlou S, Kim HW, Baino F. Mesoporous bioactive glasses: promising platforms for antibacterial strategies. Acta Biomater. 2018;81:1-19.
Baino F, Fiume E. 3D printing of hierarchical scaffolds based on mesoporous bioactive glasses (MBGs)-fundamentals and applications. Materials. 2020;13(7):1688.
Zhang X, Zeng D, Li N, et al. Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration. Sci Rep. 2016;6(1):19361.
Westhauser F, Wilkesmann S, Nawaz Q, Schmitz SI, Moghaddam A, Boccaccini AR. Osteogenic properties of manganese-doped mesoporous bioactive glass nanoparticles. J Biomed Mater Res A. 2020;108(9):1806-1815.
Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32(11):2757-2774.
Kermani F, Mollazadeh Beidokhti S, Baino F, Gholamzadeh-Virany Z, Mozafari M, Kargozar S. Strontium- and cobalt-doped multicomponent mesoporous bioactive glasses (MBGs) for potential use in bone tissue engineering applications. Materials. 2020;13(6):1348.
Jodati H, Güner B, Evis Z, Keskin D, Tezcaner A. Synthesis and characterization of magnesium-lanthanum dual doped bioactive glasses. Ceram Int. 2020;46(8):10503-10511.
Amudha S, Ramya JR, Arul KT, et al. Enhanced mechanical and biocompatible properties of strontium ions doped mesoporous bioactive glass. Compos Part B Eng. 2020;196:108099.
Nagrath M, Gallant R, Yazdi AR, et al. Tantalum-containing mesoporous bioactive glass powder for hemostasis. J Biomater Appl. 2020;0885328220965150. https://doi.org.10.1177/0885328220965150. Epub ahead of print.
Lüthen F, Bulnheim U, Müller PD, Rychly J, Jesswein H, Nebe JGB. Influence of manganese ions on cellular behavior of human osteoblasts in vitro. Biomol Eng. 2007;24(5):531-536.
Miola M, Brovarone CV, Maina G, et al. In vitro study of manganese-doped bioactive glasses for bone regeneration. Mater Sci Eng C. 2014;38:107-118.
Torres PM, Vieira SI, Cerqueira AR, et al. Effects of Mn-doping on the structure and biological properties of beta-tricalcium phosphate. J Inorg Biochem. 2014;136:57-66.
Yu L, Tian Y, Qiao Y, Liu X. Mn-containing titanium surface with favorable osteogenic and antimicrobial functions synthesized by PIII&D. Colloids Surf B Biointerfaces. 2017;152:376-384.
Barrioni BR, Norris E, Li S, Naruphontjirakul P, Jones JR, Pereira MM. Osteogenic potential of sol-gel bioactive glasses containing manganese. J Mater Sci Mater Med. 2019;30(7):86.
Chitra S, Bargavi P, Balasubramaniam M, Chandran RR, Balakumar S. Impact of copper on in-vitro biomineralization, drug release efficacy and antimicrobial properties of bioactive glasses. Korean J Couns Psychother. 2020;109:110598.
Nescakova Z, Zheng K, Liverani L, et al. Multifunctional zinc ion doped sol - gel derived mesoporous bioactive glass nanoparticles for biomedical applications. Bioact Mater. 2019;4:312-321.
Kwun I-S, Cho Y-E, Lomeda R-AR, et al. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone. 2010;46(3):732-741.
Yamaguchi M. Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med. 1998;11(2-3):119-135.
Balasubramanian P, Strobel LA, Kneser U, Boccaccini AR. Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications. Biomed Glass. 2015;1:51-69.
Oh S-A, Kim S-H, Won J-E, Kim J-J, Shin US, Kim H-W. Effects on growth and osteogenic differentiation of mesenchymal stem cells by the zinc-added sol-gel bioactive glass granules. J Tissue Eng. 2011;2010:475260.
Finney L, Vogt S, Fukai T, Glesne D. Copper and angiogenesis: UNRAVELLING a relationship key to CANCER progression. Clin Exp Pharmacol Physiol. 2009;36(1):88-94.
Rodríguez JP, Ríos S, González M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem. 2002;85(1):92-100.
Wu C, Zhou Y, Xu M, et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials. 2013;34(2):422-433.
Wang H, Zhao S, Zhou J, et al. Evaluation of borate bioactive glass scaffolds as a controlled delivery system for copper ions in stimulating osteogenesis and angiogenesis in bone healing. J Mater Chem B. 2014;2(48):8547-8557.
Ryan EJ, Ryan AJ, González-Vázquez A, et al. Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials. 2019;197:405-416.
Zheng K, Dai X, Lu M, Hüser N, Taccardi N, Boccaccini AR. Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications. Colloids Surf B Biointerfaces. 2017;150:159-167.
Reible B, Schmidmaier G, Moghaddam A, Westhauser F. Insulin-like growth factor-1 as a possible alternative to bone morphogenetic protein-7 to induce osteogenic differentiation of human mesenchymal stem cells in vitro. Int J Mol Sci. 2018;19(6):1674.
Reible B, Schmidmaier G, Prokscha M, Moghaddam A, Westhauser F. Continuous stimulation with differentiation factors is necessary to enhance osteogenic differentiation of human mesenchymal stem cells in-vitro. Growth Factors. 2017;35(4-5):179-188.
Widholz B, Tsitlakidis S, Reible B, Moghaddam A, Westhauser F. Pooling of patient-derived mesenchymal stromal cells reduces inter-individual confounder-associated variation without negative impact on cell viability, proliferation and osteogenic differentiation. Cell. 2019;8(6):633.
Hohenbild F, Arango-Ospina M, Moghaddam A, Boccaccini AR, Westhauser F. Preconditioning of bioactive glasses before introduction to static cell culture: what is really necessary? Methods Protoc. 2020;3(2):38.
Wilkesmann S, Westhauser F, Fellenberg J. Combined fluorescence-based in vitro assay for the simultaneous detection of cell viability and alkaline phosphatase activity during osteogenic differentiation of osteoblast precursor cells. Method Protocol. 2020;3(2):30.
Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cell Mater. 2012;23:13-27.
Nawaz Q, Ur Rehman MA, Roether JA, et al. Bioactive glass based scaffolds incorporating gelatin/manganese doped mesoporous bioactive glass nanoparticle coating. Ceram Int. 2019;45(12):14608-14613.
Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26(1):62-69.
Zheng K, Boccaccini AR. Sol-gel processing of bioactive glass nanoparticles: a review. Adv Colloid Interface Sci. 2017;249:363-373.
Bejarano J, Caviedes P, Palza H. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. Biomed Mater. 2015;10(2):025001.
Zhang Z, Dong H, Gorman BP, Mueller DW, Reidy RF. Behavior of copper ions in silica xerogels. J Non Cryst Solids. 2004;341(1):157-161.
Hudon P, Baker DR. The nature of phase separation in binary oxide melts and glasses. I. Silicate systems. J Non Cryst Solids. 2002;303(3):299-345.
Liu X, Rahaman MN, Day DE. Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid. J Mater Sci Mater Med. 2013;24(3):583-595.
Takeda A. Manganese action in brain function. Brain Res Brain Res Rev. 2003;41(1):79-87.
Al-anbaky Q, Al-karakooly Z, Kilaparty SP, et al. Cytotoxicity of manganese (III) complex in human breast adenocarcinoma cell line is mediated by the generation of reactive oxygen species followed by mitochondrial damage. Int J Toxicol. 2016;35(6):672-682.
Razumov IA, Zav'yalov EL, Troitskii SY, et al. Selective cytotoxicity of manganese nanoparticles against human glioblastoma cells. Bull Exp Biol Med. 2017;163(4):561-565.
Hernroth B, Holm I, Gondikas A, Tassidis H. Manganese inhibits viability of prostate cancer cells. Anticancer Res. 2018;38(1):137-145.
Westhauser F, Hohenbild F, Arango-Ospina M, et al. Bioactive glass (BG) ICIE16 shows promising osteogenic properties compared to crystallized 45S5-BG. Int J Mol Sci. 2020;21(5):1639.
Wilkesmann S, Fellenberg J, Nawaz Q, et al. Primary osteoblasts, osteoblast precursor cells or osteoblast-like cell lines: which human cell types are (most) suitable for characterizing 45S5-bioactive glass? J Biomed Mater Res A. 2020;108(3):663-674.
Strause L, Saltman P, Glowacki J. The effect of deficiencies of manganese and copper on osteoinduction and on resorption of bone particles in rats. Calcif Tissue Int. 1987;41(3):145-150.
El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater. 2017;62:1-28.
McGovern JA, Griffin M, Hutmacher DW. Animal models for bone tissue engineering and modelling disease. Dis Model Mech. 2018;11(4):33084.
Aina V, Perardi A, Bergandi L, et al. Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts. Chem Biol Interact. 2007;167(3):207-218.
Nikolic-Hughes I, O'Brien PJ, Herschlag D. Alkaline phosphatase catalysis is ultrasensitive to charge sequestered between the active site zinc ions. J Am Chem Soc. 2005;127(26):9314-9315.
Huang Z, Nelson ER, Smith RL, Goodman SB. The sequential expression profiles of growth factors from osteoprogenitors [correction of osteroprogenitors] to osteoblasts in vitro. Tissue Eng. 2007;13(9):2311-2320.
Hoemann CD, El-Gabalawy H, McKee MD. In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol Biol. 2009;57(4):318-323.
Karadjian M, Essers C, Tsitlakidis S, et al. Biological properties of calcium phosphate bioactive glass composite bone substitutes: current experimental evidence. Int J Mol Sci. 2019;20(2):305.
Begum S, Johnson WE, Worthington T, Martin RA. The influence of pH and fluid dynamics on the antibacterial efficacy of 45S5 bioglass. Biomed Mater. 2016;11(1):015006.

Auteurs

Fabian Westhauser (F)

Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany.

Sebastian Wilkesmann (S)

Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany.

Qaisar Nawaz (Q)

Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany.

Frederike Hohenbild (F)

Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany.

Felix Rehder (F)

Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany.

Merve Saur (M)

Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany.

Jörg Fellenberg (J)

Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany.

Arash Moghaddam (A)

Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany.
ATORG - Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Aschaffenburg, Germany.

Muhammad S Ali (MS)

Institute of Particle Technology, University of Erlangen-Nuremberg, Erlangen, Germany.

Wolfgang Peukert (W)

Institute of Particle Technology, University of Erlangen-Nuremberg, Erlangen, Germany.

Aldo R Boccaccini (AR)

Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH