A generative spiking neural-network model of goal-directed behaviour and one-step planning.
Journal
PLoS computational biology
ISSN: 1553-7358
Titre abrégé: PLoS Comput Biol
Pays: United States
ID NLM: 101238922
Informations de publication
Date de publication:
12 2020
12 2020
Historique:
received:
03
12
2019
accepted:
01
10
2020
revised:
18
12
2020
pubmed:
9
12
2020
medline:
20
2
2021
entrez:
8
12
2020
Statut:
epublish
Résumé
In mammals, goal-directed and planning processes support flexible behaviour used to face new situations that cannot be tackled through more efficient but rigid habitual behaviours. Within the Bayesian modelling approach of brain and behaviour, models have been proposed to perform planning as probabilistic inference but this approach encounters a crucial problem: explaining how such inference might be implemented in brain spiking networks. Recently, the literature has proposed some models that face this problem through recurrent spiking neural networks able to internally simulate state trajectories, the core function at the basis of planning. However, the proposed models have relevant limitations that make them biologically implausible, namely their world model is trained 'off-line' before solving the target tasks, and they are trained with supervised learning procedures that are biologically and ecologically not plausible. Here we propose two novel hypotheses on how brain might overcome these problems, and operationalise them in a novel architecture pivoting on a spiking recurrent neural network. The first hypothesis allows the architecture to learn the world model in parallel with its use for planning: to this purpose, a new arbitration mechanism decides when to explore, for learning the world model, or when to exploit it, for planning, based on the entropy of the world model itself. The second hypothesis allows the architecture to use an unsupervised learning process to learn the world model by observing the effects of actions. The architecture is validated by reproducing and accounting for the learning profiles and reaction times of human participants learning to solve a visuomotor learning task that is new for them. Overall, the architecture represents the first instance of a model bridging probabilistic planning and spiking-processes that has a degree of autonomy analogous to the one of real organisms.
Identifiants
pubmed: 33290414
doi: 10.1371/journal.pcbi.1007579
pii: PCOMPBIOL-D-19-02108
pmc: PMC7748287
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1007579Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Behav Brain Sci. 2011 Aug;34(4):169-88; disuccsion 188-231
pubmed: 21864419
PLoS One. 2015 Aug 18;10(8):e0134356
pubmed: 26284370
Nature. 2006 Jun 15;441(7095):876-9
pubmed: 16778890
J Neurosci. 2017 Jan 25;37(4):839-853
pubmed: 28123020
Front Behav Neurosci. 2015 Aug 26;9:225
pubmed: 26379518
Nat Rev Neurosci. 2010 Feb;11(2):127-38
pubmed: 20068583
Neurosci Biobehav Rev. 2013 Mar;37(3):491-521
pubmed: 23333761
PLoS Comput Biol. 2014 Mar 27;10(3):e1003511
pubmed: 24675787
Front Synaptic Neurosci. 2012 Jul 12;4:2
pubmed: 22807913
Sci Rep. 2016 Feb 18;6:21142
pubmed: 26888174
Front Behav Neurosci. 2013 Oct 23;7:135
pubmed: 24167476
Neuron. 2013 Oct 16;80(2):312-25
pubmed: 24139036
Front Behav Neurosci. 2016 Oct 18;10:181
pubmed: 27803652
Neural Comput. 1995 Sep;7(5):889-904
pubmed: 7584891
Eur J Neurosci. 2005 Jul;22(2):513-23
pubmed: 16045504
J Neurosci. 2015 Sep 16;35(37):12643-58
pubmed: 26377456
PLoS Comput Biol. 2018 Aug 28;14(8):e1006227
pubmed: 30153263
Front Syst Neurosci. 2008 Nov 24;2:4
pubmed: 19104670
Hippocampus. 1994 Jun;4(3):374-91
pubmed: 7842058
Front Neurorobot. 2019 Jul 26;13:45
pubmed: 31402859
Sensors (Basel). 2017 Nov 23;17(12):
pubmed: 29168772
Neurosci Biobehav Rev. 2019 May;100:19-34
pubmed: 30790636
Neuron. 2011 Jul 28;71(2):370-9
pubmed: 21791294
Psychol Rev. 2012 Jan;119(1):120-54
pubmed: 22229491
Trends Cogn Sci. 2000 Apr;4(4):138-147
pubmed: 10740278
PLoS Comput Biol. 2011 Nov;7(11):e1002211
pubmed: 22096452
Nat Commun. 2017 Jul 26;8(1):138
pubmed: 28743932
Neural Netw. 2020 Jun;126:42-51
pubmed: 32197212
Cereb Cortex. 2008 Jul;18(7):1485-95
pubmed: 18033767
Trends Cogn Sci. 2012 Oct;16(10):485-8
pubmed: 22940577
Neuroimage. 2011 Aug 15;57(4):1580-90
pubmed: 21664278
Neuropharmacology. 1998 Apr-May;37(4-5):407-19
pubmed: 9704982
J Comput Neurosci. 2006 Aug;21(1):35-49
pubmed: 16633938
Neural Comput. 2002 Aug;14(8):1771-800
pubmed: 12180402
PLoS Comput Biol. 2013 Apr;9(4):e1003037
pubmed: 23633941
Nat Neurosci. 2013 Sep;16(9):1170-8
pubmed: 23955561
Front Comput Neurosci. 2013 Jan 02;6:97
pubmed: 23293598
PLoS Comput Biol. 2020 Dec 8;16(12):e1007579
pubmed: 33290414
Nat Neurosci. 2005 Dec;8(12):1704-11
pubmed: 16286932
Cognition. 2009 Dec;113(3):262-280
pubmed: 18926527
Neuron. 2012 Aug 23;75(4):556-71
pubmed: 22920249
Neural Comput. 2006 Feb;18(2):283-328
pubmed: 16378516
Neural Comput. 2000 Nov;12(11):2519-35
pubmed: 11110125
PLoS Comput Biol. 2020 Apr 23;16(4):e1007805
pubmed: 32324758
Nat Rev Neurosci. 2015 Dec;16(12):719-32
pubmed: 26530468
Neuron. 2004 Sep 30;44(1):23-30
pubmed: 15450157
J Neurosci. 2016 Feb 3;36(5):1529-46
pubmed: 26843636
News Physiol Sci. 2000 Oct;15:219-224
pubmed: 11390914