Molecular Docking Simulations on Histone Deacetylases (HDAC)-1 and -2 to Investigate the Flavone Binding.
epigenetics
flavones
histone deacetylase inhibitors
molecular simulations
Journal
Biomedicines
ISSN: 2227-9059
Titre abrégé: Biomedicines
Pays: Switzerland
ID NLM: 101691304
Informations de publication
Date de publication:
04 Dec 2020
04 Dec 2020
Historique:
received:
18
10
2020
revised:
27
11
2020
accepted:
02
12
2020
entrez:
9
12
2020
pubmed:
10
12
2020
medline:
10
12
2020
Statut:
epublish
Résumé
Histone modifications through acetylation are fundamental for remodelling chromatin and consequently activating gene expression. The imbalance between acetylation and deacetylation activity causes transcriptional dysregulation associated with several disorders. Flavones, small molecules of plant origin, are known to interfere with class I histone deacetylase (HDAC) enzymes and to enhance acetylation, restoring cell homeostasis. To investigate the possible physical interactions of flavones on human HDAC1 and 2, we carried out in silico molecular docking simulations. Our data have revealed how flavone, and other two flavones previously investigated, i.e., apigenin and luteolin, can interact as ligands with HDAC1 and 2 at the active site binding pocket. Regulation of HDAC activity by dietary flavones could have important implications in developing epigenetic therapy to regulate the cell gene expression.
Identifiants
pubmed: 33291755
pii: biomedicines8120568
doi: 10.3390/biomedicines8120568
pmc: PMC7761979
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Università degli Studi della Campania Luigi Vanvitelli
ID : VALERE: Vanvitelli per la Ricerca
Organisme : Regione Campania
ID : Campania Regional Government Technology Platform Lotta alle Patologie Oncologiche: iCURE-B21C17000030007
Organisme : Regione Campania
ID : Campania Regional Government FASE2: IDEAL
Organisme : Ministero dell'Istruzione, dell'Università e della Ricerca
ID : Proof of Concept-EPICUREPOC01_00043-B64I19000290008
Références
Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13
pubmed: 26400175
Eur J Pharmacol. 2011 Jan 25;651(1-3):18-25
pubmed: 21074525
Future Med Chem. 2018 Aug 01;10(16):1925-1945
pubmed: 29992822
Cell Prolif. 2013 Apr;46(2):183-92
pubmed: 23510473
J Comput Chem. 2009 Dec;30(16):2785-91
pubmed: 19399780
Foods. 2020 Jan 16;9(1):
pubmed: 31963228
Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15064-9
pubmed: 15477595
Clin Epigenetics. 2015 Jul 10;7:64
pubmed: 26161152
J Am Chem Soc. 2011 Apr 27;133(16):6110-3
pubmed: 21456530
Int J Biochem Cell Biol. 2007;39(10):1902-14
pubmed: 17604209
Food Chem Toxicol. 2014 Nov;73:71-83
pubmed: 25139119
J Biol Chem. 2013 Sep 13;288(37):26926-43
pubmed: 23897821
Mol Carcinog. 2012 Dec;51(12):952-62
pubmed: 22006862
Chonnam Med J. 2016 Jan;52(1):1-11
pubmed: 26865995
Cold Spring Harb Perspect Biol. 2014 Apr 01;6(4):a018713
pubmed: 24691964
Sci Rep. 2016 Sep 02;6:32516
pubmed: 27587238
R Soc Open Sci. 2019 Jun 5;6(6):190338
pubmed: 31312496
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Angew Chem Int Ed Engl. 2005 May 20;44(21):3186-216
pubmed: 15898057
J Clin Invest. 2014 Jan;124(1):30-9
pubmed: 24382387
J Med Chem. 2004 Jun 17;47(13):3409-17
pubmed: 15189037
Nucleic Acids Res. 2000 Jan 1;28(1):235-42
pubmed: 10592235
Int J Mol Sci. 2019 Mar 16;20(6):
pubmed: 30884785
Mol Biol Rep. 2015 Nov;42(11):1515-31
pubmed: 26033434
Sci Rep. 2017 Nov 9;7(1):15156
pubmed: 29123130