Linking morphological and molecular sources to disentangle the case of Xylodon australis.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
15 12 2020
15 12 2020
Historique:
received:
05
06
2020
accepted:
20
11
2020
entrez:
15
12
2020
pubmed:
16
12
2020
medline:
16
12
2020
Statut:
epublish
Résumé
The use of different sources of evidence has been recommended in order to conduct species delimitation analyses to solve taxonomic issues. In this study, we use a maximum likelihood framework to combine morphological and molecular traits to study the case of Xylodon australis (Hymenochaetales, Basidiomycota) using the locate.yeti function from the phytools R package. Xylodon australis has been considered a single species distributed across Australia, New Zealand and Patagonia. Multi-locus phylogenetic analyses were conducted to unmask the actual diversity under X. australis as well as the kinship relations respect their relatives. To assess the taxonomic position of each clade, locate.yeti function was used to locate in a molecular phylogeny the X. australis type material for which no molecular data was available using morphological continuous traits. Two different species were distinguished under the X. australis name, one from Australia-New Zealand and other from Patagonia. In addition, a close relationship with Xylodon lenis, a species from the South East of Asia, was confirmed for the Patagonian clade. We discuss the implications of our results for the biogeographical history of this genus and we evaluate the potential of this method to be used with historical collections for which molecular data is not available.
Identifiants
pubmed: 33319784
doi: 10.1038/s41598-020-78399-8
pii: 10.1038/s41598-020-78399-8
pmc: PMC7738490
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
22004Références
J Bacteriol. 1990 Aug;172(8):4238-46
pubmed: 2376561
Evolution. 2009 Dec;63(12):3258-68
pubmed: 19663993
Fungal Genet Biol. 2000 Oct;31(1):21-32
pubmed: 11118132
Persoonia. 2018 Dec;41:238-417
pubmed: 30728607
Trends Ecol Evol. 2004 Sep;19(9):464-9
pubmed: 16701308
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6241-6
pubmed: 22454494
Mycol Res. 2008 Apr;112(Pt 4):425-36
pubmed: 18314318
MycoKeys. 2019 Feb 28;47:97-137
pubmed: 30858753
IMA Fungus. 2019 Jul 2;10:9
pubmed: 32355610
Evolution. 1981 Nov;35(6):1229-1242
pubmed: 28563384
MycoKeys. 2018 Aug 28;(38):121-127
pubmed: 30275743
Ambio. 2008 Mar;37(2):114-8
pubmed: 18488554
Trends Microbiol. 2009 Nov;17(11):488-97
pubmed: 19782570
Am J Hum Genet. 1973 Sep;25(5):471-92
pubmed: 4741844
Mol Ecol. 1993 Apr;2(2):113-8
pubmed: 8180733
J Theor Biol. 1990 Feb 22;142(4):485-501
pubmed: 2338834
PLoS Comput Biol. 2014 Apr 10;10(4):e1003537
pubmed: 24722319
Methods Mol Biol. 2014;1115:69-84
pubmed: 24415470
BMC Evol Biol. 2007 Nov 08;7:214
pubmed: 17996036
Bioinformatics. 2012 Jun 15;28(12):1647-9
pubmed: 22543367
Evolution. 2018 Sep;72(9):1801-1814
pubmed: 29998561
Microbiol Spectr. 2017 Jul;5(4):
pubmed: 28710849
Mol Biol Evol. 1994 May;11(3):459-68
pubmed: 8015439
Bioinformatics. 2011 Feb 15;27(4):592-3
pubmed: 21169378
Evolution. 2015 Apr;69(4):1027-35
pubmed: 25683068
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Mycol Res. 2004 Jul;108(Pt 7):781-6
pubmed: 15446711