Identifying the Critical Anion-Cation Coordination to Regulate the Electric Double Layer for an Efficient Lithium-Metal Anode Interface.
anion coordination
cation solvation
electric double layer
lithium protection
solid electrolyte interphase
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
19 Feb 2021
19 Feb 2021
Historique:
received:
01
10
2020
revised:
05
12
2020
pubmed:
17
12
2020
medline:
17
12
2020
entrez:
16
12
2020
Statut:
ppublish
Résumé
The persistent efforts to reveal the formation and evolution mechanisms of solid electrolyte interphase (SEI) are of fundamental significance for the rational regulation. In this work, through combined theoretical and experimental model investigations, we elucidate that the electric double layer (EDL) chemistry at the electrode/electrolyte interface beyond the thermodynamic stability of electrolyte components predominately controls the competitive reduction reactions during SEI construction on Li metal anode. Specifically, the negatively-charged surface of Li metal will prompt substantial cation enrichment and anion deficiency within the EDL. Necessarily, only the species participating in the solvation shell of cations could be electrostatically accumulated in proximity of Li metal surface and thereafter be preferentially reduced during sustained dynamic cycling. Incorporating multi-valent cation additives to more effectively drag the favorable anionic SEI enablers into EDL is validated as a promising strategy to upgrade the Li protection performance. The conclusions drawn herein afford deeper understandings to bridge the EDL principle, cation solvation, and SEI formation, shedding fresh light on the targeted regulation of reactive alkali metal interfaces.
Identifiants
pubmed: 33325102
doi: 10.1002/anie.202013271
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4215-4220Subventions
Organisme : Natural Science Foundation of Beijing Municipality
ID : JQ20004
Organisme : Natural Science Foundation of Beijing Municipality
ID : L182021
Organisme : Ministry of Science and Technology of the People's Republic of China
ID : 2016YFA0202500
Organisme : National Natural Science Foundation of China
ID : 21776019
Informations de copyright
© 2020 Wiley-VCH GmbH.
Références
M. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433.
M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.
F. Wu, J. Maier, Y. Yu, Chem. Soc. Rev. 2020, 49, 1569.
X. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403.
E. Peled, J. Electrochem. Soc. 1979, 126, 2047.
D. Aurbach, A. Zaban, Y. Gofer, Y. Ein-Ely, I. Weissman, O. Chusid, O. Abramson, J. Power Sources 1995, 54, 76.
E. Peled, D. Golodnitsky, G. Ardel, J. Electrochem. Soc. 1997, 144, L208.
X. B. Cheng, R. Zhang, C. Z. Zhao, F. Wei, J. G. Zhang, Q. Zhang, Adv. Sci. 2016, 3, 1500213.
M. Winter, Z. Phys. Chem. 2009, 223, 1395.
J. B. Goodenough, Y. Kim, Chem. Mater. 2010, 22, 587.
S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D. L. Wood, Carbon 2016, 105, 52.
S. K. Heiskanen, J. Kim, B. L. Lucht, Joule 2019, 3, 2322.
D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.
R. Xu, X.-B. Cheng, C. Yan, X.-Q. Zhang, Y. Xiao, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, Matter 2019, 1, 317.
C. Yan, H. R. Li, X. Chen, X. Q. Zhang, X. B. Cheng, R. Xu, J. Q. Huang, Q. Zhang, J. Am. Chem. Soc. 2019, 141, 9422.
Y. Zhou, M. Su, X. Yu, Y. Zhang, J.-G. Wang, X. Ren, R. Cao, W. Xu, D. R. Baer, Y. Du, O. Borodin, Y. Wang, X.-L. Wang, K. Xu, Z. Xu, C. Wang, Z. Zhu, Nat. Nanotechnol. 2020, 15, 224.
X. Q. Zhang, X. Chen, X. B. Cheng, B. Q. Li, X. Shen, C. Yan, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 5301;
Angew. Chem. 2018, 130, 5399.
C. Yan, Y. X. Yao, X. Chen, X. B. Cheng, X. Q. Zhang, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 14055;
Angew. Chem. 2018, 130, 14251.
J. Fu, X. Ji, J. Chen, L. Chen, X. Fan, D. Mu, C. Wang, Angew. Chem. Int. Ed. 2020, 59, 22194;
Angew. Chem. 2020, 132, 22378.
C. M. Burke, V. Pande, A. Khetan, V. Viswanathan, B. D. McCloskey, Proc. Natl. Acad. Sci. USA 2015, 112, 9293.
S. Li, W. Zhang, Q. Wu, L. Fan, X. Wang, X. Wang, Z. Shen, Y. He, Y. Lu, Angew. Chem. Int. Ed. 2020, 59, 14935;
Angew. Chem. 2020, 132, 15045.
D. Diaz, D. W. Hahn, Spectrochim. Acta Part A 2020, 233, 7.
H.-B. Han, S.-S. Zhou, D.-J. Zhang, S.-W. Feng, L.-F. Li, K. Liu, W.-F. Feng, J. Nie, H. Li, X.-J. Huang, J. Power Sources 2011, 196, 3623.
G. Zhang, H. J. Peng, C. Z. Zhao, X. Chen, L. D. Zhao, P. Li, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 16732;
Angew. Chem. 2018, 130, 16974.
Z. Jiang, L. Jin, Z. Han, W. Hu, Z. Zeng, Y. Sun, J. Xie, Angew. Chem. Int. Ed. 2019, 58, 11374;
Angew. Chem. 2019, 131, 11496.
V. Gutmann, Electrochim. Acta 1976, 21, 661.
X.-Q. Zhang, T. Li, B.-Q. Li, R. Zhang, P. Shi, C. Yan, J.-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 3252;
Angew. Chem. 2020, 132, 3278.
X. Chen, X. Shen, T.-Z. Hou, R. Zhang, H.-J. Peng, Q. Zhang, Chem 2020, 6, 2242.
O. Borodin, Curr. Opin. Electrochem. 2019, 13, 86.
S. Honary, F. Zahir, Trop. J. Pharm. Res. 2013, 12, 255.
G. A. Attard, J. Electroanal. Chem. 2018, 819, 481.
C. Yan, R. Xu, Y. Xiao, J.-F. Ding, L. Xu, B.-Q. Li, J.-Q. Huang, Adv. Funct. Mater. 2020, 30, 1909887.
M. He, R. Guo, G. M. Hobold, H. Gao, B. M. Gallant, Proc. Natl. Acad. Sci. USA 2020, 117, 73.
S. H. Lee, J.-Y. Hwang, J. Ming, Z. Cao, H. A. Nguyen, H.-G. Jung, J. Kim, Y.-K. Sun, Adv. Energy Mater. 2020, 10, 2000567.
W. Zhang, Q. Wu, J. Huang, L. Fan, Z. Shen, Y. He, Q. Feng, G. Zhu, Y. Lu, Adv. Mater. 2020, 32, 2001740.
W. Zhang, Z. Shen, S. Li, L. Fan, X. Wang, F. Chen, X. Zang, T. Wu, F. Ma, Y. Lu, Adv. Funct. Mater. 2020, 30, 2003800.