Redox regulation of immunometabolism.
Animals
Antioxidants
/ metabolism
B-Lymphocytes
/ immunology
Glutathione
/ immunology
Humans
Lymphocyte Activation
Macrophages
/ immunology
Metabolic Networks and Pathways
/ immunology
Models, Biological
Models, Immunological
NF-E2-Related Factor 2
/ immunology
Oxidation-Reduction
Reactive Oxygen Species
/ immunology
T-Lymphocytes
/ immunology
Thioredoxins
/ immunology
Journal
Nature reviews. Immunology
ISSN: 1474-1741
Titre abrégé: Nat Rev Immunol
Pays: England
ID NLM: 101124169
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
accepted:
12
11
2020
pubmed:
20
12
2020
medline:
23
7
2021
entrez:
19
12
2020
Statut:
ppublish
Résumé
Metabolic pathways and redox reactions are at the core of life. In the past decade(s), numerous discoveries have shed light on how metabolic pathways determine the cellular fate and function of lymphoid and myeloid cells, giving rise to an area of research referred to as immunometabolism. Upon activation, however, immune cells not only engage specific metabolic pathways but also rearrange their oxidation-reduction (redox) system, which in turn supports metabolic reprogramming. In fact, studies addressing the redox metabolism of immune cells are an emerging field in immunology. Here, we summarize recent insights revealing the role of reactive oxygen species (ROS) and the differential requirement of the main cellular antioxidant pathways, including the components of the thioredoxin (TRX) and glutathione (GSH) pathways, as well as their transcriptional regulator NF-E2-related factor 2 (NRF2), for proliferation, survival and function of T cells, B cells and macrophages.
Identifiants
pubmed: 33340021
doi: 10.1038/s41577-020-00478-8
pii: 10.1038/s41577-020-00478-8
doi:
Substances chimiques
Antioxidants
0
NF-E2-Related Factor 2
0
Reactive Oxygen Species
0
Thioredoxins
52500-60-4
Glutathione
GAN16C9B8O
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
363-381Références
O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).
pubmed: 27396447
pmcid: 5001910
Wang, R. & Green, D. R. Metabolic checkpoints in activated T cells. Nat. Immunol. 13, 907–915 (2012).
pubmed: 22990888
Buck, M. D., O’Sullivan, D. & Pearce, E. L. T cell metabolism drives immunity. J. Exp. Med. 212, 1345–1360 (2015).
pubmed: 26261266
pmcid: 4548052
O’Neill, L. A. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23 (2016).
pubmed: 26694970
pmcid: 4710204
Boothby, M. & Rickert, R. C. Metabolic regulation of the immune humoral response. Immunity 46, 743–755 (2017).
pubmed: 28514675
pmcid: 5640164
Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).
pubmed: 11089981
Arner, E. S. Focus on mammalian thioredoxin reductases — important selenoproteins with versatile functions. Biochim. Biophys. Acta 1790, 495–526 (2009).
pubmed: 19364476
Brigelius-Flohe, R. & Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta 1830, 3289–3303 (2013).
pubmed: 23201771
Kalinina, E. V., Chernov, N. N. & Novichkova, M. D. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemistry 79, 1562–1583 (2014).
pubmed: 25749165
Ceriello, A. & Motz, E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol. 24, 816–823 (2004).
pubmed: 14976002
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).
pubmed: 11742414
Toyokuni, S., Okamoto, K., Yodoi, J. & Hiai, H. Persistent oxidative stress in cancer. FEBS Lett. 358, 1–3 (1995).
pubmed: 7821417
Andreadis, A. A., Hazen, S. L., Comhair, S. A. & Erzurum, S. C. Oxidative and nitrosative events in asthma. Free Radic. Biol. Med. 35, 213–225 (2003).
pubmed: 12885584
Jenner, P. Oxidative stress in Parkinson’s disease. Ann. Neurol. 53, S26–S38 (2003).
pubmed: 12666096
Lyras, L., Cairns, N. J., Jenner, A., Jenner, P. & Halliwell, B. An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease. J. Neurochem. 68, 2061–2069 (1997).
pubmed: 9109533
Meischl, C. & Roos, D. The molecular basis of chronic granulomatous disease. Springer Semin. Immunopathol. 19, 417–434 (1998).
pubmed: 9618766
Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).
pubmed: 15039755
Panday, A., Sahoo, M. K., Osorio, D. & Batra, S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol. Immunol. 12, 5–23 (2015).
pubmed: 25263488
Barua, S., Kim, J. Y., Yenari, M. A. & Lee, J. E. The role of NOX inhibitors in neurodegenerative diseases. IBRO Rep. 7, 59–69 (2019).
pubmed: 31463415
pmcid: 6709343
Ray, P. D., Huang, B. W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 24, 981–990 (2012).
pubmed: 22286106
pmcid: 3454471
Fox, C. J., Hammerman, P. S. & Thompson, C. B. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5, 844–852 (2005).
pubmed: 16239903
van der Windt, G. J. & Pearce, E. L. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 249, 27–42 (2012).
pubmed: 22889213
pmcid: 3645891
Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).
pubmed: 26321679
pmcid: 4864363
Gubser, P. M. et al. Rapid effector function of memory CD8
pubmed: 23955661
Finlay, D. K. et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8
pubmed: 23183047
pmcid: 3526360
Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of T
pubmed: 21708926
pmcid: 3135370
Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).
pubmed: 24930970
pmcid: 4079750
Macintyre, A. N. & Rathmell, J. C. Activated lymphocytes as a metabolic model for carcinogenesis. Cancer Metab. 1, 5 (2013).
pubmed: 24280044
pmcid: 3834493
Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).
Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011). This paper demonstrates that activated T cells reprogramme their metabolism towards enhanced glycolytic, pentose phosphate and glutaminolytic pathways.
pubmed: 22195744
pmcid: 3248798
Patra, K. C. & Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347–354 (2014).
pubmed: 25037503
pmcid: 4329227
Menendez, J. A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7, 763–777 (2007).
pubmed: 17882277
Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).
pubmed: 20670887
pmcid: 2946786
Hukelmann, J. L. et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat. Immunol. 17, 104–112 (2016).
pubmed: 26551880
Macintyre, A. N. et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 34, 224–236 (2011).
pubmed: 21295499
pmcid: 3052433
Kidani, Y. et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 14, 489–499 (2013).
pubmed: 23563690
pmcid: 3652626
Endo, Y. et al. Obesity drives T
pubmed: 26235623
Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).
pubmed: 25282359
van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8
pubmed: 22206904
van der Windt, G. J. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl Acad. Sci. USA 110, 14336–14341 (2013).
pubmed: 23940348
pmcid: 3761631
O’Sullivan, D. et al. Memory CD8
pubmed: 25001241
pmcid: 4120664
Ma, R. et al. A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8
pubmed: 29230018
Jeon, S. M., Chandel, N. S. & Hay, N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485, 661–665 (2012).
pubmed: 22660331
pmcid: 3607316
Carracedo, A., Cantley, L. C. & Pandolfi, P. P. Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13, 227–232 (2013).
pubmed: 23446547
pmcid: 3766957
Holmgren, A. & Sengupta, R. The use of thiols by ribonucleotide reductase. Free Radic. Biol. Med. 49, 1617–1628 (2010).
pubmed: 20851762
Muri, J. et al. The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation. Nat. Commun. 9, 1851 (2018). This study demonstrates a key role for the TRX1 system in dNTP biosynthesis in the last step of the PPP during rapid T cell proliferation.
pubmed: 29749372
pmcid: 5945637
Muri, J. et al. The thioredoxin-1 and glutathione/glutaredoxin-1 systems redundantly fuel murine B-cell development and responses. Eur. J. Immunol. 49, 709–723 (2019).
pubmed: 30802940
Tagaya, Y. et al. ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J. 8, 757–764 (1989).
pubmed: 2785919
pmcid: 400872
Tagaya, Y. et al. IL-2 receptor(p55)/Tac-inducing factor. Purification and characterization of adult T cell leukemia-derived factor. J. Immunol. 140, 2614–2620 (1988).
pubmed: 2895791
Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).
pubmed: 31827283
pmcid: 6937596
Chakraborty, P. et al. Thioredoxin-1 improves the immunometabolic phenotype of antitumor T cells. J. Biol. Chem. 294, 9198–9212 (2019).
pubmed: 30971427
pmcid: 6556575
Levring, T. B. et al. Human CD4
pubmed: 26392411
pmcid: 4673131
Geisberger, R. et al. B- and T-cell-specific inactivation of thioredoxin reductase 2 does not impair lymphocyte development and maintenance. Biol. Chem. 388, 1083–1090 (2007).
pubmed: 17937622
Conrad, M. et al. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol. Cell Biol. 24, 9414–9423 (2004).
pubmed: 15485910
pmcid: 522221
Hwang, J. et al. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat. Commun. 5, 2958 (2014).
pubmed: 24389582
Muri, J., Thut, H. & Kopf, M. The thioredoxin-1 inhibitor Txnip restrains effector T-cell and germinal center B-cell expansion. Eur. J. Immunol. https://doi.org/10.1002/eji.202048851 (2020).
Wilde, B. R. & Ayer, D. E. Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis. Br. J. Cancer 113, 1529–1533 (2015).
pubmed: 26469830
pmcid: 4705882
Wu, N. et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol. Cell 49, 1167–1175 (2013).
pubmed: 23453806
pmcid: 3615143
Kaadige, M. R., Looper, R. E., Kamalanaadhan, S. & Ayer, D. E. Glutamine-dependent anapleurosis dictates glucose uptake and cell growth by regulating MondoA transcriptional activity. Proc. Natl Acad. Sci. USA 106, 14878–14883 (2009).
pubmed: 19706488
pmcid: 2736411
Oka, S. et al. Thioredoxin binding protein-2/thioredoxin-interacting protein is a critical regulator of insulin secretion and peroxisome proliferator-activated receptor function. Endocrinology 150, 1225–1234 (2009).
pubmed: 18974273
Cha-Molstad, H., Saxena, G., Chen, J. & Shalev, A. Glucose-stimulated expression of Txnip is mediated by carbohydrate response element-binding protein, p300, and histone H4 acetylation in pancreatic β cells. J. Biol. Chem. 284, 16898–16905 (2009).
pubmed: 19411249
pmcid: 2719326
Stoltzman, C. A. et al. Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc. Natl Acad. Sci. USA 105, 6912–6917 (2008).
pubmed: 18458340
pmcid: 2383952
Patwari, P. et al. Thioredoxin-independent regulation of metabolism by the α-arrestin proteins. J. Biol. Chem. 284, 24996–25003 (2009).
pubmed: 19605364
pmcid: 2757204
Yu, F. X., Chai, T. F., He, H., Hagen, T. & Luo, Y. Thioredoxin-interacting protein (Txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate. J. Biol. Chem. 285, 25822–25830 (2010).
pubmed: 20558747
pmcid: 2919144
Klein Geltink, R. I. et al. Mitochondrial priming by CD28. Cell 171, 385–397 (2017). This paper shows that TXNIP downregulation ensures mitochondrial priming and future protective memory T cell responses.
Saetre, R. & Rabenstein, D. L. Determination of cysteine in plasma and urine and homocysteine in plasma by high-pressure liquid chromatography. Anal. Biochem. 90, 684–692 (1978).
pubmed: 727503
Lo, M., Wang, Y. Z. & Gout, P. W. The X
pubmed: 18181196
Garg, S. K., Yan, Z., Vitvitsky, V. & Banerjee, R. Differential dependence on cysteine from transsulfuration versus transport during T cell activation. Antioxid. Redox Signal. 15, 39–47 (2011).
pubmed: 20673163
pmcid: 3110100
Angelini, G. et al. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc. Natl Acad. Sci. USA 99, 1491–1496 (2002).
pubmed: 11792859
pmcid: 122218
Yan, Z. & Banerjee, R. Redox remodeling as an immunoregulatory strategy. Biochemistry 49, 1059–1066 (2010).
pubmed: 20070126
Castellani, P., Angelini, G., Delfino, L., Matucci, A. & Rubartelli, A. The thiol redox state of lymphoid organs is modified by immunization: role of different immune cell populations. Eur. J. Immunol. 38, 2419–2425 (2008).
pubmed: 18792398
Arensman, M. D. et al. Cystine–glutamate antiporter xCT deficiency suppresses tumor growth while preserving antitumor immunity. Proc. Natl Acad. Sci. USA 116, 9533–9542 (2019).
pubmed: 31019077
pmcid: 6511047
Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).
pubmed: 24792914
pmcid: 4074507
Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).
pubmed: 23525088
pmcid: 3672957
Pollizzi, K. N. et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8
pubmed: 27064374
pmcid: 4873361
Verbist, K. C. et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature 532, 389–393 (2016).
pubmed: 27064903
pmcid: 4851250
Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010).
pubmed: 20554958
Araujo, L., Khim, P., Mkhikian, H., Mortales, C. L. & Demetriou, M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. eLife 6, e21330 (2017).
pubmed: 28059703
pmcid: 5257256
Blagih, J. et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42, 41–54 (2015).
pubmed: 25607458
Tompkins, S. C. et al. Disrupting mitochondrial pyruvate uptake directs glutamine into the TCA cycle away from glutathione synthesis and impairs hepatocellular tumorigenesis. Cell Rep. 28, 2608–2619.e6 (2019).
pubmed: 31484072
pmcid: 6746334
Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013). This pioneering study shows that mitochondrial ROS are required for T cell-mediated immunity.
pubmed: 23415911
pmcid: 3582741
Yi, J. S., Holbrook, B. C., Michalek, R. D., Laniewski, N. G. & Grayson, J. M. Electron transport complex I is required for CD8
pubmed: 16818739
Mak, T. W. et al. Glutathione primes T cell metabolism for inflammation. Immunity 46, 675–689 (2017). This paper dissects the mechanisms whereby glutathione buffers ROS to allow metabolic rewiring during inflammatory T cell responses.
pubmed: 28423341
Lian, G. et al. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. eLife 7, e36158 (2018).
pubmed: 30198844
pmcid: 6152796
Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).
pubmed: 22500797
pmcid: 3331679
Powell, J. D., Pollizzi, K. N., Heikamp, E. B. & Horton, M. R. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 30, 39–68 (2012).
pubmed: 22136167
Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8
pubmed: 24076634
pmcid: 3977965
Klein-Hessling, S. et al. NFATc1 controls the cytotoxicity of CD8
pubmed: 28894104
pmcid: 5593830
Vaeth, M. et al. Store-operated Ca
pubmed: 29030115
pmcid: 5683398
Namgaladze, D., Hofer, H. W. & Ullrich, V. Redox control of calcineurin by targeting the binuclear Fe
pubmed: 11741966
Kurniawan, H. et al. Glutathione restricts serine metabolism to preserve regulatory T cell function. Cell Metab. 31, 920–936.e7 (2020). This works describes the role of GSH in restricting serine availability to preserve the functionality of regulatory T cells.
pubmed: 32213345
pmcid: 7265172
Pollizzi, K. N. & Powell, J. D. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat. Rev. Immunol. 14, 435–446 (2014).
pubmed: 24962260
pmcid: 4390057
Rolf, J. et al. AMPKα1: a glucose sensor that controls CD8 T-cell memory. Eur. J. Immunol. 43, 889–896 (2013).
pubmed: 23310952
pmcid: 3734624
Case, A. J. et al. Elevated mitochondrial superoxide disrupts normal T cell development, impairing adaptive immune responses to an influenza challenge. Free Radic. Biol. Med. 50, 448–458 (2011).
pubmed: 21130157
Tse, H. M. et al. NADPH oxidase deficiency regulates T
pubmed: 20881184
Jackson, S. H., Devadas, S., Kwon, J., Pinto, L. A. & Williams, M. S. T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat. Immunol. 5, 818–827 (2004). This study reports that mature T cells express a NADPH oxidase that generates ROS and thus regulates elements of TCR signalling.
pubmed: 15258578
Kaminski, M. M. et al. T cell activation is driven by an ADP-dependent glucokinase linking enhanced glycolysis with mitochondrial reactive oxygen species generation. Cell Rep. 2, 1300–1315 (2012).
pubmed: 23168256
Kaminski, M. M. et al. Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: mechanism of ciprofloxacin-mediated immunosuppression. J. Immunol. 184, 4827–4841 (2010).
pubmed: 20335530
Laniewski, N. G. & Grayson, J. M. Antioxidant treatment reduces expansion and contraction of antigen-specific CD8
pubmed: 15452243
pmcid: 521823
Schreck, R., Rieber, P. & Baeuerle, P. A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J. 10, 2247–2258 (1991).
pubmed: 2065663
pmcid: 452914
Quintana, A. et al. T cell activation requires mitochondrial translocation to the immunological synapse. Proc. Natl Acad. Sci. USA 104, 14418–14423 (2007).
pubmed: 17726106
pmcid: 1964825
Phan, A. T. & Goldrath, A. W. Hypoxia-inducible factors regulate T cell metabolism and function. Mol. Immunol. 68, 527–535 (2015).
pubmed: 26298577
pmcid: 4679538
Previte, D. M. et al. Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4
pubmed: 28426686
pmcid: 5398529
Franchina, D. G., Dostert, C. & Brenner, D. Reactive oxygen species: involvement in T cell signaling and metabolism. Trends Immunol. 39, 489–502 (2018).
pubmed: 29452982
Lillig, C. H., Berndt, C. & Holmgren, A. Glutaredoxin systems. Biochim. Biophys. Acta 1780, 1304–1317 (2008).
pubmed: 18621099
Lillig, C. H. & Holmgren, A. Thioredoxin and related molecules — from biology to health and disease. Antioxid. Redox Signal. 9, 25–47 (2007).
pubmed: 17115886
Matsushita, M. et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 212, 555–568 (2015). This work provides evidence that GPX4 prevents lipid peroxidation-driven ferroptosis in activated T cells.
pubmed: 25824823
pmcid: 4387287
Kraft, V. A. N. et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci. 6, 41–53 (2020).
pubmed: 31989025
Cronin, S. J. F. et al. The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature 563, 564–568 (2018).
pubmed: 30405245
pmcid: 6438708
Pearce, E. L. & Pearce, E. J. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643 (2013).
pubmed: 23601682
pmcid: 3654249
Lee, D. H. et al. Glutathione peroxidase 1 deficiency attenuates concanavalin A-induced hepatic injury by modulation of T-cell activation. Cell Death Dis. 7, e2208 (2016).
pubmed: 27124582
pmcid: 4855674
Won, H. Y. et al. Glutathione peroxidase 1 deficiency attenuates allergen-induced airway inflammation by suppressing T
pubmed: 20367278
Taguchi, K., Motohashi, H. & Yamamoto, M. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cell 16, 123–140 (2011).
Morzadec, C. et al. Nrf2 expression and activity in human T lymphocytes: stimulation by T cell receptor activation and priming by inorganic arsenic and tert-butylhydroquinone. Free Radic. Biol. Med. 71, 133–145 (2014).
pubmed: 24632381
Turley, A. E., Zagorski, J. W. & Rockwell, C. E. The Nrf2 activator tBHQ inhibits T cell activation of primary human CD4 T cells. Cytokine 71, 289–295 (2015).
pubmed: 25484350
Zagorski, J. W. et al. The Nrf2 activator, tBHQ, differentially affects early events following stimulation of Jurkat cells. Toxicol. Sci. 136, 63–71 (2013).
pubmed: 23945499
pmcid: 3829568
Rangasamy, T. et al. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J. Exp. Med. 202, 47–59 (2005).
pubmed: 15998787
pmcid: 2212893
Rockwell, C. E., Zhang, M., Fields, P. E. & Klaassen, C. D. T
pubmed: 22250088
Suzuki, T. et al. Systemic activation of NRF2 alleviates lethal autoimmune inflammation in scurfy mice. Mol. Cell Biol. 37 (2017).
Noel, S. et al. T lymphocyte-specific activation of Nrf2 protects from AKI. J. Am. Soc. Nephrol. 26, 2989–3000 (2015).
pubmed: 26293820
pmcid: 4657838
Maj, T. et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017).
pubmed: 29083399
pmcid: 5770150
Mitsuishi, Y. et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22, 66–79 (2012).
pubmed: 22789539
Hayes, J. D. & Dinkova-Kostova, A. T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39, 199–218 (2014).
pubmed: 24647116
Jellusova, J. Cross-talk between signal transduction and metabolism in B cells. Immunol. Lett. 201, 1–13 (2018).
pubmed: 30439477
Jellusova, J. The role of metabolic checkpoint regulators in B cell survival and transformation. Immunol. Rev. 295, 39–53 (2020).
pubmed: 32185805
Akkaya, M. & Pierce, S. K. From zero to sixty and back to zero again: the metabolic life of B cells. Curr. Opin. Immunol. 57, 1–7 (2019).
pubmed: 30312894
Li, C. et al. Over-expression of Thioredoxin-1 mediates growth, survival, and chemoresistance and is a druggable target in diffuse large B-cell lymphoma. Oncotarget 3, 314–326 (2012).
pubmed: 22447839
pmcid: 3359887
Fiskus, W. et al. Auranofin induces lethal oxidative and endoplasmic reticulum stress and exerts potent preclinical activity against chronic lymphocytic leukemia. Cancer Res. 74, 2520–2532 (2014).
pubmed: 24599128
pmcid: 4172421
Wang, J. et al. Repurposing auranofin to treat TP53-mutated or PTEN-deleted refractory B-cell lymphoma. Blood Cancer J. 9, 95 (2019).
pubmed: 31780660
pmcid: 6882812
Fidyt, K. et al. Targeting the thioredoxin system as a novel strategy against B-cell acute lymphoblastic leukemia. Mol. Oncol. 13, 1180–1195 (2019).
pubmed: 30861284
pmcid: 6487705
Harris, I. S. et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27, 211–222 (2015).
pubmed: 25620030
Kiebala, M. et al. Dual targeting of the thioredoxin and glutathione antioxidant systems in malignant B cells: a novel synergistic therapeutic approach. Exp. Hematol. 43, 89–99 (2015).
pubmed: 25448488
Chan, L. N. et al. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature 542, 479–483 (2017). This report highlights the key role of TXNIP in performing metabolic gatekeeper functions by suppression of glucose uptake.
pubmed: 28192788
pmcid: 5621518
Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nat. Immunol. 8, 463–470 (2007).
pubmed: 17440452
Bertolotti, M., Sitia, R. & Rubartelli, A. On the redox control of B lymphocyte differentiation and function. Antioxid. Redox Signal. 16, 1139–1149 (2012).
pubmed: 22229488
Vene, R. et al. Redox remodeling allows and controls B-cell activation and differentiation. Antioxid. Redox Signal. 13, 1145–1155 (2010).
pubmed: 20367281
Waters, L. R., Ahsan, F. M., Wolf, D. M., Shirihai, O. & Teitell, M. A. Initial B cell activation induces metabolic reprogramming and mitochondrial remodeling. iScience 5, 99–109 (2018).
pubmed: 30240649
pmcid: 6123864
Muri, J., Thut, H., Bornkamm, G. W. & Kopf, M. B1 and marginal zone B cells but not follicular B2 cells require Gpx4 to prevent lipid peroxidation and ferroptosis. Cell Rep. 29, 2731–2744 e2734 (2019). This study shows that GPX4 detoxifies lipid peroxides and prevents ferroptosis in B1 cells and marginal zone B cells but not in follicular B cells.
pubmed: 31775041
Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).
pubmed: 27842070
Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).
pubmed: 27842066
Bertolotti, M. et al. B- to plasma-cell terminal differentiation entails oxidative stress and profound reshaping of the antioxidant responses. Antioxid. Redox Signal. 13, 1133–1144 (2010).
pubmed: 20486764
Aronov, M. & Tirosh, B. Metabolic control of plasma cell differentiation — what we know and what we don’t know. J. Clin. Immunol. 36, 12–17 (2016).
pubmed: 26910101
Dufort, F. J. et al. Glucose-dependent de novo lipogenesis in B lymphocytes: a requirement for ATP–citrate lyase in lipopolysaccharide-induced differentiation. J. Biol. Chem. 289, 7011–7024 (2014).
pubmed: 24469453
pmcid: 3945362
Lam, W. Y. et al. Mitochondrial pyruvate import promotes long-term survival of antibody-secreting plasma cells. Immunity 45, 60–73 (2016).
pubmed: 27396958
pmcid: 4956536
Jang, K. J. et al. Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nat. Commun. 6, 6750 (2015).
pubmed: 25857523
Singh, D. K. et al. The strength of receptor signaling is centrally controlled through a cooperative loop between Ca
pubmed: 15851034
Wheeler, M. L. & Defranco, A. L. Prolonged production of reactive oxygen species in response to B cell receptor stimulation promotes B cell activation and proliferation. J. Immunol. 189, 4405–4416 (2012).
pubmed: 23024271
Capasso, M. et al. HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nat. Immunol. 11, 265–272 (2010).
pubmed: 20139987
pmcid: 3030552
Jellusova, J. et al. Gsk3 is a metabolic checkpoint regulator in B cells. Nat. Immunol. 18, 303–312 (2017).
pubmed: 28114292
pmcid: 5310963
Diaz-Munoz, M. D. et al. The RNA-binding protein HuR is essential for the B cell antibody response. Nat. Immunol. 16, 415–425 (2015).
pubmed: 25706746
pmcid: 4479220
Chen, M. et al. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat. Med. 20, 503–510 (2014).
pubmed: 24747745
pmcid: 4066663
Baumgarth, N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 11, 34–46 (2011).
pubmed: 21151033
Pillai, S. & Cariappa, A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat. Rev. Immunol. 9, 767–777 (2009).
pubmed: 19855403
Clarke, A. J., Riffelmacher, T., Braas, D., Cornall, R. J. & Simon, A. K. B1a B cells require autophagy for metabolic homeostasis and self-renewal. J. Exp. Med. 215, 399–413 (2018). This study demonstrates that B1 cells are bioenergetically more active than B2 cells, and that they acquire exogeneous fatty acids and store them in lipid droplets.
pubmed: 29326381
pmcid: 5789411
Hauck, A. K. & Bernlohr, D. A. Oxidative stress and lipotoxicity. J. Lipid Res. 57, 1976–1986 (2016).
pubmed: 27009116
pmcid: 5087875
Diskin, C. & Palsson-McDermott, E. M. Metabolic modulation in macrophage effector function. Front. Immunol. 9, 270 (2018).
pubmed: 29520272
pmcid: 5827535
Geeraerts, X., Bolli, E., Fendt, S. M. & Van Ginderachter, J. A. Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity. Front. Immunol. 8, 289 (2017).
pubmed: 28360914
pmcid: 5350105
Rodriguez-Prados, J. C. et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185, 605–614 (2010).
pubmed: 20498354
Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).
pubmed: 24492615
pmcid: 3953299
Michl, J., Ohlbaum, D. J. & Silverstein, S. C. 2-Deoxyglucose selectively inhibits Fc and complement receptor-mediated phagocytosis in mouse peritoneal macrophages II. Dissociation of the inhibitory effects of 2-deoxyglucose on phagocytosis and ATP generation. J. Exp. Med. 144, 1484–1493 (1976).
pubmed: 1003099
Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519 (2017).
pubmed: 28473584
pmcid: 6260791
Rius, J. et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453, 807–811 (2008).
pubmed: 18432192
pmcid: 2669289
Palsson-McDermott, E. M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015).
pubmed: 25565206
pmcid: 5198835
Luo, W. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732–744 (2011).
pubmed: 21620138
pmcid: 3130564
Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470.e13 (2016). This work demonstrates that M1 macrophages repurpose their mitochondria from ATP production to ROS generation in order to sustain IL-1β responses.
pubmed: 27667687
pmcid: 5863951
Melillo, G. et al. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J. Exp. Med. 182, 1683–1693 (1995).
pubmed: 7500013
Melillo, G., Taylor, L. S., Brooks, A., Cox, G. W. & Varesio, L. Regulation of inducible nitric oxide synthase expression in IFN-γ-treated murine macrophages cultured under hypoxic conditions. J. Immunol. 157, 2638–2644 (1996).
pubmed: 8805668
Everts, B. et al. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120, 1422–1431 (2012). This work shows that NO inhibits OXPHOS in inflammatory dendritic cells.
pubmed: 22786879
pmcid: 3423780
Galvan-Pena, S. et al. Malonylation of GAPDH is an inflammatory signal in macrophages. Nat. Commun. 10, 338 (2019).
pubmed: 30659183
pmcid: 6338787
Wolf, A. J. et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 166, 624–636 (2016).
pubmed: 27374331
pmcid: 5534359
Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011).
pubmed: 21258394
Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).
pubmed: 25786174
Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).
pubmed: 23535595
pmcid: 4031686
Haschemi, A. et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15, 813–826 (2012).
pubmed: 22682222
pmcid: 3370649
Muri, J., Thut, H., Feng, Q. & Kopf, M. Thioredoxin-1 distinctly promotes NF-κB target DNA binding and NLRP3 inflammasome activation independently of Txnip. eLife 9, e53627 (2020). This work provides genetic evidence that TRX1 regulates NF-κB-mediated and NLRP3-mediated inflammatory responses in dendritic cells and macrophages.
pubmed: 32096759
pmcid: 7062472
Ghesquiere, B., Wong, B. W., Kuchnio, A. & Carmeliet, P. Metabolism of stromal and immune cells in health and disease. Nature 511, 167–176 (2014).
pubmed: 25008522
Cameron, A. M. et al. Inflammatory macrophage dependence on NAD
pubmed: 30858618
Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1–IKKε supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).
pubmed: 24562310
pmcid: 4358322
Rodriguez, A. E. et al. Serine metabolism supports macrophage IL-1β production. Cell Metab. 29, 1003–1011.e4 (2019). This paper reveals the role of serine-dependent GSH biosynthesis in supporting IL-1β production.
pubmed: 30773464
pmcid: 6447453
Kang, R. et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe 24, 97–108.e4 (2018).
pubmed: 29937272
pmcid: 6043361
Kapralov, A. A. et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat. Chem. Biol. 16, 278–290 (2020).
pubmed: 32080625
pmcid: 7233108
Huang, S. C. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 15, 846–855 (2014).
pubmed: 25086775
pmcid: 4139419
Vats, D. et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006).
pubmed: 16814729
pmcid: 1904486
Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).
pubmed: 17515919
pmcid: 2587297
West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011).
pubmed: 21525932
pmcid: 3460538
Billingham, L. K. & Chandel, N. S. NAD–biosynthetic pathways regulate innate immunity. Nat. Immunol. 20, 380–382 (2019).
pubmed: 30858621
Di Gioia, M. et al. Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation. Nat. Immunol. 21, 42–53 (2020).
pubmed: 31768073
Infantino, V. et al. The mitochondrial citrate carrier: a new player in inflammation. Biochem. J. 438, 433–436 (2011).
pubmed: 21787310
Bailey, J. D. et al. Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 28, 218–230.e7 (2019).
pubmed: 31269442
pmcid: 6616861
Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA 110, 7820–7825 (2013).
pubmed: 23610393
pmcid: 3651434
Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).
pubmed: 27374498
pmcid: 5108454
Qin, W. et al. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat. Chem. Biol. 15, 983–991 (2019).
pubmed: 31332308
Hooftman, A. et al. The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation. Cell Metab. 32, 468–478 (2020).
pubmed: 32791101
pmcid: 7422798
Bambouskova, M. et al. Electrophilic properties of itaconate and derivatives regulate the IκBζ–ATF3 inflammatory axis. Nature 556, 501–504 (2018).
pubmed: 29670287
pmcid: 6037913
Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018). This study shows that the metabolite itaconate activates NRF2 and induces an anti-inflammatory programme in M1 macrophages.
pubmed: 29590092
pmcid: 6047741
Muri, J., Wolleb, H., Broz, P., Carreira, E. M. & Kopf, M. Electrophilic Nrf2 activators and itaconate inhibit inflammation at low dose and promote IL-1β production and inflammatory apoptosis at high dose. Redox Biol. 36, 101647 (2020).
pubmed: 32863237
pmcid: 7387846
Thimmulappa, R. K. et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116, 984–995 (2006).
pubmed: 16585964
pmcid: 1421348
Liu, M. et al. Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice. Kidney Int. 76, 277–285 (2009).
pubmed: 19436334
Khor, T. O. et al. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res. 66, 11580–11584 (2006).
pubmed: 17178849
Osburn, W. O. et al. Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int. J. Cancer 121, 1883–1891 (2007).
pubmed: 17631644
Lamle, J. et al. Nuclear factor-eythroid 2-related factor 2 prevents alcohol-induced fulminant liver injury. Gastroenterology 134, 1159–1168 (2008).
pubmed: 18395094
Chen, P. C. et al. Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: critical role for the astrocyte. Proc. Natl Acad. Sci. USA 106, 2933–2938 (2009).
pubmed: 19196989
pmcid: 2650368
Johnson, D. A., Amirahmadi, S., Ward, C., Fabry, Z. & Johnson, J. A. The absence of the pro-antioxidant transcription factor Nrf2 exacerbates experimental autoimmune encephalomyelitis. Toxicol. Sci. 114, 237–246 (2010).
pubmed: 19910389
Cho, H. Y. & Kleeberger, S. R. Nrf2 protects against airway disorders. Toxicol. Appl. Pharmacol. 244, 43–56 (2010).
pubmed: 19646463
Kobayashi, E. H. et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7, 11624 (2016). This work shows that NRF2 binds to the proximity of pro-inflammatory genes and thus inhibits RNA polymerase II recruitment in macrophages.
pubmed: 27211851
pmcid: 4879264
Muri, J. et al. Cyclopentenone prostaglandins and structurally related oxidized lipid species instigate and share distinct pro- and anti-inflammatory pathways. Cell Rep. 30, 4399–4417.e7 (2020). This study shows that whereas electrophilic lipid mediators inhibit transcription of pro-inflammatory cytokines at low concentrations, they induce inflammatory apoptosis and IL-1β processing at high doses.
pubmed: 32234476
Bretscher, P. et al. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2. EMBO Mol. Med. 7, 593–607 (2015).
pubmed: 25770125
pmcid: 4492819
Chartoumpekis, D. V. et al. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice. Diabetes 60, 2465–2473 (2011).
pubmed: 21852674
pmcid: 3178292
Pi, J. et al. Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity. J. Biol. Chem. 285, 9292–9300 (2010).
pubmed: 20089859
pmcid: 2838347
Freigang, S. et al. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur. J. Immunol. 41, 2040–2051 (2011).
pubmed: 21484785
Okada, K. et al. Deletion of Nrf2 leads to rapid progression of steatohepatitis in mice fed atherogenic plus high-fat diet. J. Gastroenterol. 48, 620–632 (2013).
pubmed: 22972520
Ruotsalainen, A. K. et al. The absence of macrophage Nrf2 promotes early atherogenesis. Cardiovasc. Res. 98, 107–115 (2013).
pubmed: 23341579
Zhao, C., Gillette, D. D., Li, X., Zhang, Z. & Wen, H. Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation. J. Biol. Chem. 289, 17020–17029 (2014).
pubmed: 24798340
pmcid: 4059144
Heiss, E. H., Schachner, D., Zimmermann, K. & Dirsch, V. M. Glucose availability is a decisive factor for Nrf2-mediated gene expression. Redox Biol. 1, 359–365 (2013).
pubmed: 24024172
pmcid: 3757705
Baardman, J. et al. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. Cell Rep. 25, 2044–2052.e5 (2018).
pubmed: 30463003
Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).
pubmed: 27291964
Swanson, K. V., Deng, M. & Ting, J. P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).
pubmed: 31036962
pmcid: 7807242
Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).
pubmed: 23702978
Tschopp, J. & Schroder, K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 10, 210–215 (2010).
pubmed: 20168318
Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011). This paper shows that mitochondrial ROS can activate the NLRP3 inflammasome.
pubmed: 21124315
Zhong, Z. et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560, 198–203 (2018).
pubmed: 30046112
pmcid: 6329306
Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012). This paper demonstrates that mitochondrial DNA released during cell death causes activation of the NLRP3 inflammasome.
pubmed: 22342844
pmcid: 3312986
van Bruggen, R. et al. Human NLRP3 inflammasome activation is Nox1–4 independent. Blood 115, 5398–5400 (2010).
pubmed: 20407038
Meissner, F. et al. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116, 1570–1573 (2010).
pubmed: 20495074
pmcid: 2938844
Chauhan, D. et al. BAX/BAK-induced apoptosis results in caspase-8-dependent IL-1β maturation in macrophages. Cell Rep. 25, 2354–2368.e5 (2018).
pubmed: 30485805
Vince, J. E. et al. The mitochondrial apoptotic effectors BAX/BAK activate caspase-3 and -7 to trigger NLRP3 inflammasome and caspase-8 driven IL-1β activation. Cell Rep. 25, 2339–2353.e4 (2018).
pubmed: 30485804
Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136–140 (2010).
pubmed: 20023662
Oslowski, C. M. et al. Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab. 16, 265–273 (2012).
pubmed: 22883234
pmcid: 3418541
Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010).
pubmed: 20835230
pmcid: 3103663
Meissner, F., Molawi, K. & Zychlinsky, A. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat. Immunol. 9, 866–872 (2008).
pubmed: 18604212
Kim, Y. M., Talanian, R. V., Li, J. & Billiar, T. R. Nitric oxide prevents IL-1β and IFN-γ-inducing factor (IL-18) release from macrophages by inhibiting caspase-1 (IL-1β-converting enzyme). J. Immunol. 161, 4122–4128 (1998).
pubmed: 9780184
Mishra, B. B. et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat. Immunol. 14, 52–60 (2013).
pubmed: 23160153
Matthews, J. R., Wakasugi, N., Virelizier, J. L., Yodoi, J. & Hay, R. T. Thioredoxin regulates the DNA binding activity of NF-κB by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 20, 3821–3830 (1992).
pubmed: 1508666
pmcid: 334054
Lee, K. N. et al. VDUP1 is required for the development of natural killer cells. Immunity 22, 195–208 (2005).
pubmed: 15723808
Cheng, F. et al. Impact of glutathione peroxidase-1 deficiency on macrophage foam cell formation and proliferation: implications for atherogenesis. PLoS ONE 8, e72063 (2013).
pubmed: 23991041
pmcid: 3750037
Blankenberg, S. et al. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N. Engl. J. Med. 349, 1605–1613 (2003).
pubmed: 14573732
Torzewski, M. et al. Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 27, 850–857 (2007).
pubmed: 17255533
Weinberg, E. O. et al. IL-33 induction and signaling are controlled by glutaredoxin-1 in mouse macrophages. PLoS ONE 14, e0210827 (2019).
pubmed: 30682073
pmcid: 6347181
Aesif, S. W. et al. Ablation of glutaredoxin-1 attenuates lipopolysaccharide-induced lung inflammation and alveolar macrophage activation. Am. J. Respir. Cell Mol. Biol. 44, 491–499 (2011).
pubmed: 20539014
Schulze-Topphoff, U. et al. Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proc. Natl Acad. Sci. USA 113, 4777–4782 (2016).
pubmed: 27078105
pmcid: 4855599
Kornberg, M. D. et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 360, 449–453 (2018).
pubmed: 29599194
pmcid: 5924419
Humphries, F. et al. Succination inactivates gasdermin D and blocks pyroptosis. Science (2020).
Xiao, W., Wang, R. S., Handy, D. E. & Loscalzo, J. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid. Redox Signal. 28, 251–272 (2018).
pubmed: 28648096
pmcid: 5737637
Rhee, S. G. & Kil, I. S. Multiple functions and regulation of mammalian peroxiredoxins. Annu. Rev. Biochem. 86, 749–775 (2017).
pubmed: 28226215
Lu, S. C. Glutathione synthesis. Biochim. Biophys. Acta 1830, 3143–3153 (2013).
pubmed: 22995213
Suzuki, T., Motohashi, H. & Yamamoto, M. Toward clinical application of the Keap1–Nrf2 pathway. Trends Pharmacol. Sci. 34, 340–346 (2013).
pubmed: 23664668
Arner, E. S. & Holmgren, A. The thioredoxin system in cancer. Semin. Cancer Biol. 16, 420–426 (2006).
pubmed: 17092741
Urig, S. & Becker, K. On the potential of thioredoxin reductase inhibitors for cancer therapy. Semin. Cancer Biol. 16, 452–465 (2006).
pubmed: 17056271
Mandal, P. K. et al. Loss of thioredoxin reductase 1 renders tumors highly susceptible to pharmacologic glutathione deprivation. Cancer Res. 70, 9505–9514 (2010).
pubmed: 21045148
Kinowaki, Y. et al. Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma. Lab. Invest. 98, 609–619 (2018).
pubmed: 29463878
Dai, L. et al. Genomic analysis of xCT-mediated regulatory network: identification of novel targets against AIDS-associated lymphoma. Oncotarget 6, 12710–12722 (2015).
pubmed: 25860939
pmcid: 4494968
Trzeciecka, A. et al. Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget 7, 1717–1731 (2016).
pubmed: 26636537
Weyand, C. M. & Goronzy, J. J. Immunometabolism in early and late stages of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 291–301 (2017).
pubmed: 28360422
pmcid: 6820517
Yang, Z., Fujii, H., Mohan, S. V., Goronzy, J. J. & Weyand, C. M. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J. Exp. Med. 210, 2119–2134 (2013).
pubmed: 24043759
pmcid: 3782046
Yang, Z. et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci. Transl. Med. 8, 331ra338 (2016).
Weyand, C. M., Shen, Y. & Goronzy, J. J. Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radic. Biol. Med. 125, 36–43 (2018).
pubmed: 29524605
pmcid: 6128787
Brudno, J. N. & Kochenderfer, J. N. Chimeric antigen receptor T-cell therapies for lymphoma. Nat. Rev. Clin. Oncol. 15, 31–46 (2018).
pubmed: 28857075
Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8
pubmed: 24091329
pmcid: 3784544
Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).
pubmed: 19494812
pmcid: 2803086
Sukumar, M. et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab. 23, 63–76 (2016).
pubmed: 26674251
Pilipow, K. et al. Antioxidant metabolism regulates CD8
Scheffel, M. J. et al. Efficacy of adoptive T-cell therapy is improved by treatment with the antioxidant N-acetyl cysteine, which limits activation-induced T-cell death. Cancer Res. 76, 6006–6016 (2016).
pubmed: 27742673
pmcid: 5074089
Scheffel, M. J. et al. N-Acetyl cysteine protects anti-melanoma cytotoxic T cells from exhaustion induced by rapid expansion via the downmodulation of Foxo1 in an Akt-dependent manner. Cancer Immunol. Immunother. 67, 691–702 (2018).
pubmed: 29396710
pmcid: 5862784
Apostolova, N. & Victor, V. M. Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid. Redox Signal. 22, 686–729 (2015).
pubmed: 25546574
pmcid: 4350006
Gioscia-Ryan, R. A. et al. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. J. Physiol. 592, 2549–2561 (2014).
pubmed: 24665093
pmcid: 4080937
Chouchani, E. T. et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat. Med. 19, 753–759 (2013).
pubmed: 23708290
pmcid: 4019998
Wani, W. Y. et al. Protective efficacy of mitochondrial targeted antioxidant MitoQ against dichlorvos induced oxidative stress and cell death in rat brain. Neuropharmacology 61, 1193–1201 (2011).
pubmed: 21784090
Chacko, B. K. et al. Prevention of diabetic nephropathy in Ins2
pubmed: 20825366
Mercer, J. R. et al. The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM
pubmed: 22210379
Dashdorj, A. et al. Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines. BMC Med. 11, 178 (2013).
pubmed: 23915129
pmcid: 3750576
Zang, Q. S. et al. Specific inhibition of mitochondrial oxidative stress suppresses inflammation and improves cardiac function in a rat pneumonia-related sepsis model. Am. J. Physiol. Heart Circ. Physiol 302, H1847–H1859 (2012).
pubmed: 22408027
Sova, M. & Saso, L. Design and development of Nrf2 modulators for cancer chemoprevention and therapy: a review. Drug Des. Devel Ther. 12, 3181–3197 (2018).
pubmed: 30288023
pmcid: 6161735
Cuadrado, A. et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295–317 (2019).
pubmed: 30610225
Mitsuishi, Y., Motohashi, H. & Yamamoto, M. The Keap1–Nrf2 system in cancers: stress response and anabolic metabolism. Front. Oncol. 2, 200 (2012).
pubmed: 23272301
pmcid: 3530133
Rojo de la Vega, M., Chapman, E. & Zhang, D. D. NRF2 and the hallmarks of cancer. Cancer Cell 34, 21–43 (2018).
pubmed: 29731393