Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis.


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
01 2021
Historique:
received: 27 04 2020
accepted: 12 11 2020
pubmed: 23 12 2020
medline: 9 3 2021
entrez: 22 12 2020
Statut: ppublish

Résumé

The repair of inflamed, demyelinated lesions as in multiple sclerosis (MS) necessitates the clearance of cholesterol-rich myelin debris by microglia/macrophages and the switch from a pro-inflammatory to an anti-inflammatory lesion environment. Subsequently, oligodendrocytes increase cholesterol levels as a prerequisite for synthesizing new myelin membranes. We hypothesized that lesion resolution is regulated by the fate of cholesterol from damaged myelin and oligodendroglial sterol synthesis. By integrating gene expression profiling, genetics and comprehensive phenotyping, we found that, paradoxically, sterol synthesis in myelin-phagocytosing microglia/macrophages determines the repair of acutely demyelinated lesions. Rather than producing cholesterol, microglia/macrophages synthesized desmosterol, the immediate cholesterol precursor. Desmosterol activated liver X receptor (LXR) signaling to resolve inflammation, creating a permissive environment for oligodendrocyte differentiation. Moreover, LXR target gene products facilitated the efflux of lipid and cholesterol from lipid-laden microglia/macrophages to support remyelination by oligodendrocytes. Consequently, pharmacological stimulation of sterol synthesis boosted the repair of demyelinated lesions, suggesting novel therapeutic strategies for myelin repair in MS.

Identifiants

pubmed: 33349711
doi: 10.1038/s41593-020-00757-6
pii: 10.1038/s41593-020-00757-6
pmc: PMC7116742
mid: EMS114908
doi:

Substances chimiques

Liver X Receptors 0
Nr1h3 protein, mouse 0
Sterols 0
Desmosterol 313-04-2
Squalene 7QWM220FJH
Cholesterol 97C5T2UQ7J

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

47-60

Subventions

Organisme : European Research Council
ID : 204034
Pays : International
Organisme : European Research Council
ID : 269020
Pays : International
Organisme : Multiple Sclerosis Society
ID : 38.0
Pays : United Kingdom
Organisme : National Centre for the Replacement, Refinement and Reduction of Animals in Research
ID : NC/L000423/1
Pays : United Kingdom

Références

Dietschy, J. M. Central nervous system: cholesterol turnover, brain development and neurodegeneration. Biol. Chem. 390, 287–293 (2009).
pubmed: 19166320 pmcid: 3066069
Saher, G. et al. High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8, 468–475 (2005).
pubmed: 15793579
Courtney, R. & Landreth, G. E. LXR regulation of brain cholesterol: from development to disease. Trends Endocrinol. Metab. 27, 404–414 (2016).
pubmed: 27113081 pmcid: 4986614
Reich, D. S., Lucchinetti, C. F. & Calabresi, P. A. Multiple sclerosis. N. Engl. J. Med. 378, 169–180 (2018).
pubmed: 29320652 pmcid: 6942519
Plemel, J. R., Liu, W. Q. & Yong, V. W. Remyelination therapies: a new direction and challenge in multiple sclerosis. Nat. Rev. Drug Discov. 16, 617–634 (2017).
pubmed: 28685761
Itoh, N. et al. Cell-specific and region-specific transcriptomics in the multiple sclerosis model: focus on astrocytes. Proc. Natl Acad. Sci. USA 115, E302–E309 (2018).
pubmed: 29279367
Voskuhl, R. R. et al. Gene expression in oligodendrocytes during remyelination reveals cholesterol homeostasis as a therapeutic target in multiple sclerosis. Proc. Natl Acad. Sci. USA 116, 10130–10139 (2019).
pubmed: 31040210 pmcid: 6525478
Jurevics, H. et al. Alterations in metabolism and gene expression in brain regions during cuprizone-induced demyelination and remyelination. J. Neurochem. 82, 126–136 (2002).
pubmed: 12091473
Lavrnja, I. et al. Expression profiles of cholesterol metabolism-related genes are altered during development of experimental autoimmune encephalomyelitis in the rat spinal cord. Sci. Rep. 7, 2702 (2017).
pubmed: 28578430 pmcid: 5457442
Cunha, M. I. et al. Pro-inflammatory activation following demyelination is required for myelin clearance and oligodendrogenesis. J. Exp. Med. 217, e20191390 (2020).
Yeung, M. S. Y. et al. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566, 538–542 (2019).
pubmed: 30675058 pmcid: 6420067
Berghoff, S. A. et al. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain. Nat. Commun. 8, 14241 (2017).
pubmed: 28117328 pmcid: 5286209
Spann, N. J. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151, 138–152 (2012).
pubmed: 23021221 pmcid: 3464914
Meschkat, M. et al. White matter integrity requires continuous myelin synthesis at the inner tongue. Preprint at bioRxiv https://doi.org/10.1101/2020.09.02.279612 (2020).
Cantuti-Castelvetri, L. et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science 359, 684–688 (2018).
pubmed: 29301957
Kotter, M. R., Li, W. W., Zhao, C. & Franklin, R. J. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci. 26, 328–332 (2006).
pubmed: 16399703 pmcid: 6674302
Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).
pubmed: 20428172 pmcid: 2946640
Boven, L. A. et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 129, 517–526 (2006).
pubmed: 16364958
Widenmaier, S. B. et al. NRF1 is an ER membrane sensor that is central to cholesterol homeostasis. Cell 171, 1094–1109 (2017).
pubmed: 29149604
Jakel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).
pubmed: 30747918 pmcid: 6544546
Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019).
pubmed: 30760929
Cardeno, A. et al. Squalene targets pro- and anti-inflammatory mediators and pathways to modulate over-activation of neutrophils, monocytes and macrophages. J. Funct. Foods 14, 779–790 (2015).
Saher, G. et al. Therapy of Pelizaeus–Merzbacher disease in mice by feeding a cholesterol-enriched diet. Nat. Med. 18, 1130–1135 (2012).
pubmed: 22706386
Gylling, H. & Miettinen, T. A. Postabsorptive metabolism of dietary squalene. Atherosclerosis 106, 169–178 (1994).
pubmed: 8060377
Gudi, V., Gingele, S., Skripuletz, T. & Stangel, M. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front. Cell. Neurosci. 8, 73 (2014).
pubmed: 24659953 pmcid: 3952085
Muse, E. D. et al. Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP in macrophages. Proc. Natl Acad. Sci. USA 115, E4680–E4689 (2018).
pubmed: 29632203 pmcid: 5960280
Hubler, Z. et al. Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature 560, 372–376 (2018).
pubmed: 30046109 pmcid: 6423962
Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013).
pubmed: 23872599 pmcid: 3977045
Bogie, J. F. et al. Myelin-derived lipids modulate macrophage activity by liver X receptor activation. PLoS ONE 7, e44998 (2012).
pubmed: 22984598 pmcid: 3440367
Lloyd, A. F. et al. Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nat. Neurosci. 22, 1046–1052 (2019).
pubmed: 31182869 pmcid: 6597360
Olah, M. et al. Identification of a microglia phenotype supportive of remyelination. Glia 60, 306–321 (2012).
pubmed: 22072381
Kuhlmann, T. et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24 (2017).
pubmed: 27988845
Akula, M. K. et al. Protein prenylation restrains innate immunity by inhibiting Rac1 effector interactions. Nat. Commun. 10, 3975 (2019).
pubmed: 31484924 pmcid: 6726657
Araldi, E. et al. Lanosterol modulates TLR4-mediated innate immune responses in macrophages. Cell Rep. 19, 2743–2755 (2017).
pubmed: 28658622 pmcid: 5553565
Korner, A. et al. Inhibition of Δ24-dehydrocholesterol reductase activates pro-resolving lipid mediator biosynthesis and inflammation resolution. Proc. Natl Acad. Sci. USA 116, 20623–20634 (2019).
pubmed: 31548397 pmcid: 6789642
Yang, C. et al. Sterol intermediates from cholesterol biosynthetic pathway as liver X receptor ligands. J. Biol. Chem. 281, 27816–27826 (2006).
pubmed: 16857673
Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).
pubmed: 9150132
Liebergall, S. R. et al. Inflammation triggers liver X receptor-dependent lipogenesis. Mol. Cell. Biol. 40, e00364 (2020).
Fellows Maxwell, K. et al. Oxysterols and apolipoproteins in multiple sclerosis: a 5 year follow-up study. J. Lipid Res. 60, 1190–1198 (2019).
pubmed: 31085627 pmcid: 6602132
Zmyslowski, A. & Szterk, A. Oxysterols as a biomarker in diseases. Clin. Chim. Acta 491, 103–113 (2019).
pubmed: 30685361
Safaiyan, S. et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat. Neurosci. 19, 995–998 (2016).
pubmed: 27294511 pmcid: 7116794
Marschallinger, J. et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat. Neurosci. 23, 194–208 (2020).
pubmed: 31959936 pmcid: 7595134
Thelen, K. M., Falkai, P., Bayer, T. A. & Lutjohann, D. Cholesterol synthesis rate in human hippocampus declines with aging. Neurosci. Lett. 403, 15–19 (2006).
pubmed: 16701946
Hendrickx, D. A. E. et al. Gene expression profiling of multiple sclerosis pathology identifies early patterns of demyelination surrounding chronic active lesions. Front. Immunol. 8, 1810 (2017).
pubmed: 29312322 pmcid: 5742619
Mailleux, J. et al. Active liver X receptor signaling in phagocytes in multiple sclerosis lesions. Mult. Scler. 24, 279–289 (2018).
pubmed: 28273782
Yu, S. et al. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases. FASEB J. 30, 2570–2579 (2016).
pubmed: 27025962 pmcid: 4904286
Katz Sand, I. The role of diet in multiple sclerosis: mechanistic connections and current evidence. Curr. Nutr. Rep. 7, 150–160 (2018).
pubmed: 30117071 pmcid: 6132382
Sedaghat, F., Jessri, M., Behrooz, M., Mirghotbi, M. & Rashidkhani, B. Mediterranean diet adherence and risk of multiple sclerosis: a case–control study. Asia Pac. J. Clin. Nutr. 25, 377–384 (2016).
pubmed: 27222422
Beltrán, G., Buchelo, M. E., Aguilera, M. P., Belaj, A. & Jimenez, A. Squalene in virgin olive oil: screening of variability in olive cultivars. Eur. J. Lipid Sci. Tech. 118, 1250–1253 (2016).
Smith, T. J. Squalene: potential chemopreventive agent. Expert Opin. Investig. Drugs 9, 1841–1848 (2000).
pubmed: 11060781
Quinet, E. M. et al. Gene-selective modulation by a synthetic oxysterol ligand of the liver X receptor. J. Lipid Res. 45, 1929–1942 (2004).
pubmed: 15292374
Bachmanov, A. A., Reed, D. R., Beauchamp, G. K. & Tordoff, M. G. Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav. Genet. 32, 435–443 (2002).
pubmed: 12467341 pmcid: 1397713
Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).
pubmed: 13671378
Alizadeh, A. & Karimi-Abdolrezaee, S. Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury. J. Physiol. 594, 3539–3552 (2016).
pubmed: 26857216 pmcid: 4929323
Radzun, H. J. et al. Detection of a monocyte/macrophage differentiation antigen in routinely processed paraffin-embedded tissues by monoclonal antibody Ki-M1P. Lab. Invest. 65, 306–315 (1991).
pubmed: 1890811
Lampron, A. et al. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J. Exp. Med. 212, 481–495 (2015).
pubmed: 25779633 pmcid: 4387282
Bijland, S. et al. An in vitro model for studying CNS white matter: functional properties and experimental approaches. F1000Res 8, 117 (2019).
pubmed: 31069065 pmcid: 6489523
Bottenstein, J. E. & Sato, G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl Acad. Sci. USA 76, 514–517 (1979).
pubmed: 284369 pmcid: 382972
Wang, X. & Roper, M. G. Measurement of DCF fluorescence as a measure of reactive oxygen species in murine islets of Langerhans. Anal. Methods 6, 3019–3024 (2014).
pubmed: 24955137 pmcid: 4061712
Lucchinetti, C. F. et al. Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis. Brain 131, 1759–1775 (2008).
pubmed: 18535080 pmcid: 2442427
Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014).
pubmed: 25417164
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179 pmcid: 6700744
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
pubmed: 31178118 pmcid: 6687398
McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Soft. 3, 861 (2018).
Wickham, H. ggplot2—Elegant Graphics for Data Analysis (Springer, 2009).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896
Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).
pubmed: 12808457

Auteurs

Stefan A Berghoff (SA)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Lena Spieth (L)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Ting Sun (T)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
Institute for Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany.

Leon Hosang (L)

Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany.

Lennart Schlaphoff (L)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Constanze Depp (C)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Tim Düking (T)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Jan Winchenbach (J)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Jonathan Neuber (J)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

David Ewers (D)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
Department of Clinical Neurophysiology, University Medical Centre Göttingen, Göttingen, Germany.
Department of Neurology, University Medical Centre, Göttingen, Germany.

Patricia Scholz (P)

Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany.

Franziska van der Meer (F)

Institute for Neuropathology, University Medical Centre Göttingen, Göttingen, Germany.

Ludovico Cantuti-Castelvetri (L)

Institute of Neuronal Cell Biology, Technical University Munich, German Center for Neurodegenerative Diseases, Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.

Andrew O Sasmita (AO)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Martin Meschkat (M)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Torben Ruhwedel (T)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Wiebke Möbius (W)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Roman Sankowski (R)

Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.

Marco Prinz (M)

Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.
Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
Center for Basics in NeuroModulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Inge Huitinga (I)

Neuroimmunology Research Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.

Michael W Sereda (MW)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
Department of Clinical Neurophysiology, University Medical Centre Göttingen, Göttingen, Germany.
Department of Neurology, University Medical Centre, Göttingen, Germany.

Francesca Odoardi (F)

Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany.

Till Ischebeck (T)

Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany.
Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany.

Mikael Simons (M)

Institute of Neuronal Cell Biology, Technical University Munich, German Center for Neurodegenerative Diseases, Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.

Christine Stadelmann-Nessler (C)

Institute for Neuropathology, University Medical Centre Göttingen, Göttingen, Germany.

Julia M Edgar (JM)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
Applied Neurobiology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.

Klaus-Armin Nave (KA)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany. nave@em.mpg.de.

Gesine Saher (G)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany. saher@em.mpg.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH