Single-sided NMR to estimate morphological parameters of the trabecular bone structure.
bone quality
intratrabecular porosity
morphological parameters
single-sided portable NMR
trabecular bone
Journal
Magnetic resonance in medicine
ISSN: 1522-2594
Titre abrégé: Magn Reson Med
Pays: United States
ID NLM: 8505245
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
18
06
2020
revised:
24
11
2020
accepted:
24
11
2020
pubmed:
23
12
2020
medline:
21
5
2021
entrez:
22
12
2020
Statut:
ppublish
Résumé
Single-sided Animal trabecular bone samples were analyzed by a single-sided device. The Carr-Purcell-Meiboom-Gill sequence of Without any further assumptions, the internal reference parameter (short T Low-field, low-cost portable devices that rely on intrinsic magnetic field gradients and do not use ionizing radiation are viable tools for in vitro preclinical studies of pathophysiological structural alterations of trabecular bone.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3353-3369Informations de copyright
© 2020 International Society for Magnetic Resonance in Medicine.
Références
Blümich B, Blümler P, Eidmann G, et al. The NMR-mouse: construction, excitation, and applications. J Magn Reson Imaging. 1998;16:479-484.
Blümich B. Low-field and benchtop NMR. J Magn Reson. 2019;306:27-35.
Landeghem MV, Danieli E, Perlo J, Blümich B, Casanova F. Low-gradient single-sided NMR sensor for one-shot profiling of human skin. J Magn Reson. 2012;215:74-84.
Bergman E, Sarda Y, Ritz N, et al. In vivo assessment of aged human skin with a unilateral NMR scanner. NMR Biomed. 2015;28:656-666.
Krüger M, Schwarz A, Blümich B. Investigations of silicone breast implants with the NMR-MOUSE. J Magn Reson Imaging. 2007;25:215-218.
Ali TS, Tourell MC, Hugo HJ, et al. Transverse relaxation-based assessment of mammographic density and breast tissue composition by single-sided portable NMR. Magn Reson Med. 2019;82:1199-1213.
Bashyam A, Frangieh CJ, Li M, Cima MJ. Dehydration assessment via portable, single sided magnetic resonance sensor. Magn Reson Med. 2020;83:1390-1404.
Keschenau PR, Klingel H, Reuter S, et al. Evaluation of the NMR-MOUSE as a new method for continuous functional monitoring of the small intestine during different perfusion states in a porcine model. PLoS ONE. 2018;13:e0206697.
Keschenau PR, Simons N, Klingel H, et al. Perfusion-related changes in intestinal diffusion detected by NMR-MOUSE® monitoring in minipigs. Microvasc Res. 2019;125:103876.
Navon G, Eliav U, Demco D, Blümich B. Study of order and dynamic processes in tendon by NMR and MRI. J Magn Reson Imaging. 2007;25:362-380.
Rössler E, Mattea C, Stapf S. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage. J Magn Reson. 2015;251:43-51.
Brizi L, Barbieri M, Baruffaldi F, et al. Bone volume-to-total volume ratio measured in trabecular bone by single-sided NMR devices. Magn Reson Med. 2018;79:501-510.
Barbieri M, Brizi L, Bortolotti V, et al. Single-sided NMR for the diagnosis of osteoporosis: diffusion weighted pulse sequences for the estimation of trabecular bone volume fraction in the presence of muscle tissue. Microporous Mesoporous Mater. 2018;269:166-170.
Rehorn C, Blümich B. Cultural heritage studies with mobile NMR. Angew Chem Int Ed. 2018;57:7304-7312.
Wainwright SA, Marshall LM, Ensrud KE, et al. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005;90:2787-2793.
Granke M, Makowski AJ, Uppuganti S, Does MD, Nyman JS. Identifying novel clinical surrogates to assess human bone fracture toughness. J Bone Miner Res. 2015;30:1290-1300.
Blake GM, Fogelman I. The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad Med J. 2007;83:509-517.
Fantazzini P, Brown RJS, Borgia GC. Bone tissue and porous media: common features and differences studied by NMR relaxation. Magn Reson Imaging. 2003;21:227-234.
Fantazzini P, Bortolotti V, Brown RJS, et al. Two 1H-nuclear magnetic resonance methods to measure internal porosity of bone trabeculae: by solid-liquid signal separation and by longitudinal relaxation. J Appl Phys. 2004;95:339-343.
Sigmund E, Cho H, Song Y-Q. High-resolution MRI of internal field diffusion-weighting in trabecular bone. NMR Biomed. 2009;22:436-448.
Sprinkhuizen SM, Ackerman JL, Song Y-Q. Influence of bone marrow composition on measurements of trabecular microstructure using decay due to diffusion in the internal field MRI: simulations and clinical studies. Magn Reson Med. 2013;72:1499-1508.
Mroue KH, Nishiyama Y, Kumar Pandey M, et al. Proton-detected solid-state NMR spectroscopy of bone with ultrafast magic angle spinning. Sci Rep. 2015;5:e11991.
Wehrli FW. Magnetic resonance of calcified tissues. J Magn Reson. 2013;229:35-48.
Wehrli FW, Song HK, Saha PK, Wright AC. Quantitative MRI for the assessment of bone structure and function. NMR Biomed. 2006;19:731-764.
Tutunjian PN, Vinegar HJ, Edelstein WA. Automated core analysis by 1H NMR spectroscopy. Magn Reson Imaging. 1991;9:859-864.
Fernández-Seara M, Song H, Wehrli F. Trabecular bone volume fraction mapping by low-resolution MRI. Magn Reson Med. 2001;46:103-113.
Iita N, Handa S, Tomiha S, Kose K. Development of a compact MRI system for measuring the trabecular bone microstructure of the finger. Magn Reson Med. 2007;57:272-277.
Horch RA, Nyman JS, Gochberg DF, Dortch RD, Does MD. Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging. Magn Reson Med. 2010;64:680-687.
Seifert AC, Wehrli SL, Wehrli FW. Bi-component T2* analysis of bound and pore bone water fractions fails at high field strengths. NMR Biomed. 2015;28:861-872.
Avioli LV. Significance of osteoporosis: a growing international health care problem. Calcif Tissue Int. 1991;49:S5-S7.
Krug R, Burghardt AJ, Majumdar S, Link TM. High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am. 2010;48:601-621.
Hesse B, Langer M, Varga P, et al. Alterations of mass density and 3D osteocyte lacunar properties in bisphosphonate-related osteonecrotic human jaw bone, a synchrotron µCT study. PLoS One. 2014;9:e88481.
Giuliani A, Mazzoni S, Ruggiu A, Canciani B, Cancedda R, Tavella S. High-resolution X-ray tomography: a 3D exploration into the skeletal architecture in mouse models submitted to microgravity constraints. Front Physiol. 2018;9:181.
Zebaze R, Atkinson EJ, Peng Y, et al. Increased cortical porosity and reduced trabecular density are not necessarily synonymous with bone loss and microstructural deterioration. JBMR Plus. 2019;3:e10078.
Parkinson IH, Badiei A, Fazzalari NL. Variation in segmentation of bone from micro-CT imaging: implications for quantitative morphometric analysis. Australas Phys Eng Sci Med. 2008;31:160-164.
Bortolotti V, Brown RJS, Fantazzini P. UpenWin: A Software for Inversion of Multiexponential Decay Data for Windows System. Alma Mater Studiorum-Università di Bologna; 2012. https://site.unibo.it/softwaredicam/en/software/upenwin. Accessed March 29, 2017.
Bortolotti V, Brizi L, Fantazzini P, Landi G, Zama F. Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data. J Phys: Conf Ser. 2017;904:012005.
Borgia G, Brown R, Fantazzini P. Uniform-penalty inversion of multiexponential decay data. J Magn Reson. 1998;132:65-77.
Borgia G, Brown R, Fantazzini P. Uniform-penalty inversion of multiexponential decay data: II data spacing, T2 data, systematic data errors, and diagnostics. J Magn Reson. 2000;147:273-285.
Granke M, Does MD, Nyman JS. The role of water compartments in the material properties of cortical bone. Calcif Tissue Int. 2015;97:292-307.
Horch RA, Gochberg DF, Nyman JS, Does MD. Non-invasive predictors of human cortical bone mechanical properties: T2-discriminated 1H NMR compared with high resolution X-ray. PLoS One. 2011;6:e16359.
Cowin SC. Bone poroelasticity. J Biomech. 1999;32:217-238.
Seeman E, Delmas PD. Bone quality-the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354:2250-2261.
Chen J, Grogan SP, Shao H, et al. Evaluation of bound and pore water in cortical bone using ultrashort echo time (UTE) magnetic resonance imaging. NMR Biomed. 2015;28:1754-1762.
Biswas R, Bae W, Diaz E, et al. Ultrashort echo time (UTE) imaging with bi-component analysis: bound and free water evaluation of bovine cortical bone subject to sequential drying. Bone. 2012;50:749-755.