Mathematical modeling for novel coronavirus (COVID-19) and control.
COVID‐19 mathematical model
global sensitivity analysis
numerical results
parameters estimations
real data
stability results
Journal
Numerical methods for partial differential equations
ISSN: 0749-159X
Titre abrégé: Numer Methods Partial Differ Equ
Pays: United States
ID NLM: 101513992
Informations de publication
Date de publication:
Jul 2022
Jul 2022
Historique:
received:
02
11
2020
revised:
06
11
2020
accepted:
11
11
2020
pubmed:
29
12
2020
medline:
29
12
2020
entrez:
28
12
2020
Statut:
ppublish
Résumé
In the present investigations, we construct a new mathematical for the transmission dynamics of corona virus (COVID-19) using the cases reported in Kingdom of Saudi Arabia for March 02 till July 31, 2020. We investigate the parameters values of the model using the least square curve fitting and the basic reproduction number is suggested for the given data is ℛ
Identifiants
pubmed: 33362341
doi: 10.1002/num.22695
pii: NUM22695
pmc: PMC7753307
doi:
Types de publication
Journal Article
Langues
eng
Pagination
760-776Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Adv Differ Equ. 2020;2020(1):425
pubmed: 32834821
Chaos Solitons Fractals. 2020 Oct;139:110032
pubmed: 32834593
Chaos Solitons Fractals. 2020 Sep;138:109948
pubmed: 32834578
Chaos Solitons Fractals. 2020 Jul;136:109860
pubmed: 32501371
Math Biosci. 2020 Jul;325:108364
pubmed: 32360770
Math Biosci. 2002 Nov-Dec;180:29-48
pubmed: 12387915
J Math Ind. 2020;10(1):15
pubmed: 32501416
Chaos Solitons Fractals. 2020 Nov;140:110103
pubmed: 32834629
Chaos Solitons Fractals. 2020 Sep;138:109946
pubmed: 32836915
Chaos Solitons Fractals. 2020 Oct;139:110060
pubmed: 32834613
Chaos Solitons Fractals. 2020 Oct;139:110075
pubmed: 32834618
Numer Methods Partial Differ Equ. 2022 Jul;38(4):760-776
pubmed: 33362341
Chaos Solitons Fractals. 2020 May;134:109761
pubmed: 32308258