How do children with autism spectrum disorder form gist memory during sleep? A study of slow oscillation-spindle coupling.
autism
children
consolidation
memory
sleep
slow oscillations
spindles
Journal
Sleep
ISSN: 1550-9109
Titre abrégé: Sleep
Pays: United States
ID NLM: 7809084
Informations de publication
Date de publication:
11 06 2021
11 06 2021
Historique:
received:
21
07
2020
revised:
28
10
2020
pubmed:
29
12
2020
medline:
1
7
2021
entrez:
28
12
2020
Statut:
ppublish
Résumé
Sleep is assumed to support memory through an active systems consolidation process that does not only strengthen newly encoded representations but also facilitates the formation of more abstract gist memories. Studies in humans and rodents indicate a key role of the precise temporal coupling of sleep slow oscillations (SO) and spindles in this process. The present study aimed at bolstering these findings in typically developing (TD) children, and at dissecting particularities in SO-spindle coupling underlying signs of enhanced gist memory formation during sleep found in a foregoing study in children with autism spectrum disorder (ASD) without intellectual impairment. Sleep data from 19 boys with ASD and 20 TD boys (9-12 years) were analyzed. Children performed a picture-recognition task and the Deese-Roediger-McDermott (DRM) task before nocturnal sleep (encoding) and in the next morning (retrieval). Sleep-dependent benefits for visual-recognition memory were comparable between groups but were greater for gist abstraction (recall of DRM critical lure words) in ASD than TD children. Both groups showed a closely comparable SO-spindle coupling, with fast spindle activity nesting in SO-upstates, suggesting that a key mechanism of memory processing during sleep is fully functioning already at childhood. Picture-recognition at retrieval after sleep was positively correlated to frontocortical SO-fast-spindle coupling in TD children, and less in ASD children. Critical lure recall did not correlate with SO-spindle coupling in TD children but showed a negative correlation (r = -.64, p = .003) with parietal SO-fast-spindle coupling in ASD children, suggesting other mechanisms specifically conveying gist abstraction, that may even compete with SO-spindle coupling.
Identifiants
pubmed: 33367905
pii: 6052995
doi: 10.1093/sleep/zsaa290
pmc: PMC8193554
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© Sleep Research Society 2020. Published by Oxford University Press on behalf of the Sleep Research Society.
Références
Neuroscience. 2006;137(4):1087-106
pubmed: 16343791
Prog Brain Res. 2011;193:93-110
pubmed: 21854958
Neurobiol Learn Mem. 2019 Jan;157:96-105
pubmed: 30553019
Int J Psychophysiol. 2015 Jul;97(1):58-65
pubmed: 25958790
J Neurosci. 2010 Oct 6;30(40):13211-9
pubmed: 20926647
Autism. 2017 May;21(4):493-503
pubmed: 27354432
Neurobiol Learn Mem. 2017 Jan;137:123-133
pubmed: 27903437
Sleep. 2011 Oct 01;34(10):1411-21
pubmed: 21966073
Psychol Bull. 2020 May;146(5):377-410
pubmed: 32191044
Trends Cogn Sci. 2011 Aug;15(8):343-51
pubmed: 21764357
J Neurosci. 2017 Jul 26;37(30):7111-7124
pubmed: 28637840
Nat Commun. 2018 Mar 23;9(1):1205
pubmed: 29572516
Sci Rep. 2019 Feb 13;9(1):1940
pubmed: 30760741
Sleep Med Rev. 2019 Oct;47:39-50
pubmed: 31252335
Nat Rev Neurosci. 2010 Feb;11(2):114-26
pubmed: 20046194
Brain Behav. 2020 Mar;10(3):e01557
pubmed: 32037734
J Child Psychol Psychiatry. 2019 Aug;60(8):907-916
pubmed: 30908649
Physiol Rev. 2013 Apr;93(2):681-766
pubmed: 23589831
Dev Sci. 2020 May;23(3):e12906
pubmed: 31569286
J Exp Child Psychol. 2009 Sep;104(1):132-9
pubmed: 19251274
Front Hum Neurosci. 2015 Feb 17;9:52
pubmed: 25741264
Sci Rep. 2017 Feb 17;7:42950
pubmed: 28211489
Neurosci Lett. 2018 Jul 27;680:39-53
pubmed: 29733974
Semin Pediatr Neurol. 2015 Jun;22(2):113-25
pubmed: 26072341
Comput Intell Neurosci. 2011;2011:156869
pubmed: 21253357
Nat Neurosci. 2015 Nov;18(11):1679-1686
pubmed: 26389842
Sleep. 2017 Nov 1;40(11):
pubmed: 28958008
Biol Psychol. 2015 Sep;110:107-14
pubmed: 26219603
Neuron. 2018 Jan 3;97(1):221-230.e4
pubmed: 29249289
Dev Sci. 2019 Jan;22(1):e12706
pubmed: 30252185
Sleep Med Rev. 2020 Feb;49:101224
pubmed: 31731102
J Neurosci Methods. 2008 Mar 15;168(2):494-9
pubmed: 18061683
Sleep Med. 2018 Feb;42:73-82
pubmed: 29458750
Elife. 2020 Jun 24;9:
pubmed: 32579108
Neuroimage. 2016 Jul 1;134:607-616
pubmed: 27103135
Nat Neurosci. 2019 Oct;22(10):1598-1610
pubmed: 31451802
Sleep. 2014 Sep 01;37(9):1501-12
pubmed: 25142558
Curr Biol. 2020 Feb 3;30(3):523-529.e3
pubmed: 31956024
Dev Sci. 2017 Nov;20(6):
pubmed: 27747974
Curr Protoc Neurosci. 2018 Jan 22;82:8.42.1-8.42.30
pubmed: 29357109
Neuroimage. 2014 Oct 1;99:103-10
pubmed: 24852461
Clin Neurophysiol. 2007 Jul;118(7):1525-31
pubmed: 17475551
Sleep. 2015 Dec 01;38(12):1955-63
pubmed: 26194566
Adv Cogn Psychol. 2013 Dec 31;9(4):160-72
pubmed: 24605175
J Sleep Res. 2019 Aug;28(4):e12775
pubmed: 30311707
Br J Math Stat Psychol. 2016 Nov;69(3):215-224
pubmed: 27114391
PLoS One. 2015 Dec 15;10(12):e0144720
pubmed: 26671283
Neuropsychologia. 2010 Dec;48(14):4012-9
pubmed: 20951710
Sleep Med. 2011 Aug;12(7):672-9
pubmed: 21697007
Neuropsychologia. 2018 Aug;117:84-91
pubmed: 29782873
Neurobiol Learn Mem. 2009 Oct;92(3):327-34
pubmed: 19348959
J Neurosci Methods. 2007 Aug 15;164(1):177-90
pubmed: 17517438
Brain Res. 2011 Mar 22;1380:138-45
pubmed: 20920490
Clin Neurophysiol. 2010 Nov;121(11):1844-54
pubmed: 20434395
J Sleep Res. 1996 Dec;5(4):251-61
pubmed: 9065877
Neuropsychologia. 2017 Dec;107:60-67
pubmed: 29109037
Int J Psychophysiol. 2013 Aug;89(2):252-8
pubmed: 23403325
Psychol Bull. 2012 May;138(3):458-96
pubmed: 22409507
J Sleep Res. 2019 Dec;28(6):e12835
pubmed: 30848042
Neuron. 2017 Jul 19;95(2):424-435.e6
pubmed: 28689981
J Exp Psychol. 1959 Jul;58(1):17-22
pubmed: 13664879
Neurosci Biobehav Rev. 2012 Aug;36(7):1718-28
pubmed: 22430027
Nat Neurosci. 2013 Apr;16(4):391-3
pubmed: 23434910
Sleep. 2014 Apr 01;37(4):665-71, 671A
pubmed: 24744453