Effects of Silicon Nanoparticles on Photosynthetic Pigments and Biogenic Elements in Tomato Plants Infected with Root-Knot Nematode Meloidogyne incognita.
mineral nutrients
morphophysiological parameters of the parasite
photosynthetic pigments
root-knot nematode
silicon nanoparticles
Journal
Doklady. Biochemistry and biophysics
ISSN: 1608-3091
Titre abrégé: Dokl Biochem Biophys
Pays: United States
ID NLM: 101126895
Informations de publication
Date de publication:
Nov 2020
Nov 2020
Historique:
received:
14
07
2020
accepted:
25
07
2020
revised:
24
07
2020
entrez:
28
12
2020
pubmed:
29
12
2020
medline:
1
7
2021
Statut:
ppublish
Résumé
New data on the effect of colloidal silicon nanoparticles on the content of nutrients and photosynthetic pigments in tomato plants invaded by root-knot nematode Meloidogyne incognita are presented. Foliar treatment of plants with colloidal solutions of silicon nanoparticles at concentrations of 0.5 and 1.0 μg/mL revealed an increase in the content of photosynthetic pigments and a number of biogenic elements (P, Mg, K, S, and Fe) in tomato leaves, indicating an improvement in the physiological state of the invaded plants. The stimulating effect of nanosilicon on the development and growth of plants and the inhibiting effect on the susceptibility of plants by nematodes and the morpho-physiological parameters of the parasite is shown.
Identifiants
pubmed: 33368045
doi: 10.1134/S1607672920060150
pii: 10.1134/S1607672920060150
doi:
Substances chimiques
Pigments, Biological
0
Trace Elements
0
Silicon
Z4152N8IUI
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
329-333Références
Elling, A.A., Major emerging problems with minor Meloidogyne species, Phytopathology, 2013, vol. 103, no. 11, pp. 1092–1102. https://doi.org/10.1094/PHYTO-01-13-0019-RVW
doi: 10.1094/PHYTO-01-13-0019-RVW
pubmed: 23777404
Udalova, Zh.V. and Zinovieva, S.V., Systemic induced plant resistance as a control strategy to parasites alternative to pesticides, Ecol. Eng. Environ. Protection, 2015, no. 2, pp. 59–66. http://ecoleng.org/Contents2.2015.html#9
Frew, A., Weston, L.A., Reynolds, O.L., and Gurr, G.M., The role of silicon in plant biology: a paradigm shift in research approach, Ann. Bot., 2018, vol. 121, no. 7, pp. 1265–1273. https://doi.org/10.1093/aob/mcy009
doi: 10.1093/aob/mcy009
pubmed: 29438453
pmcid: 6007437
Sakr, N., Silicon-enhanced resistance of plants to biotic stresses. Review article, Acta Phytopathol. Entomol. Hung., 2018, vol. 53, no. 2, pp. 125–141. https://doi.org/10.1556/038.53.2018.005
doi: 10.1556/038.53.2018.005
Rastogi, A., Tripathi, D.K., Yadav, S.K., Chauhan, D.K., Živčák, M., Ghorbanpour, M., Elsheery, N.I., and Brestic, M., Application of silicon nanoparticles in agriculture, 3 Biotech., 2019, vol. 9, p. 90. https://doi.org/10.1007/s13205-019-1626-7
Roldugin, V.I., Fedotov, M.A., Folmanis, G.E., Kovalenko, L.V., and Tananaev, I.G., Formation of aqueous colloidal solutions of selenium and silicon by laser ablation, Dokl. Phys. Chem., 2015, vol. 463, no. 1, pp. 161–164. https://doi.org/10.1134/S0012501615070064
doi: 10.1134/S0012501615070064
Bartlem, D.G., Jones, M.G., and Hammes, U.Z., Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots, J. Exp. Bot., 2014, vol. 65, no. 7, pp. 1789–1798. https://doi.org/10.1093/jxb/ert415
doi: 10.1093/jxb/ert415
pubmed: 24336493
Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382. https://doi.org/10.1016/0076-6879(87)48036-1
ISO/TS 18705:2015. Surface Chemical Analysis—Use of Total Reflection X-Ray Fluorescence Spectroscopy in Biological and Environmental Analysis.
Mengel, K. and Kirkby, E.A., Principles of Plant Nutrition, 5th ed., Dordrecht, The Netherlands: Kluwer Academic Publishers, 2001, p. 849. ISBN 978-1-4020-0008-9.
doi: 10.1007/978-94-010-1009-2
Nikolic, M., Nikolic, N., Liang, Y.C., Kirkby, E.A., and Romheld, V., Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species, Plant Physiol., 2007, vol. 143, no. 1, pp. 495–503. https://doi.org/10.1104/pp.106.090845
Greger, M., Ladberg, T., and Vaculik, M., Silicon influences soil availability and accumulation of mineral nutrients in various plant species, Plants (Basel), 2018, vol. 19, no. 7 (2), p. 41. https://doi.org/10.3390/plants7020041
Zhan, L.P., Peng, D.L., Wang, X.L., Kong, L.A., Peng, H., Liu, S.M., Liu, Y., and Huang, W.K., Priming effect of root-applied silicon on the enhancement of induced resistance to the root-knot nematode Meloidogyne graminicola in rice, BMC Plant. Biol., 2018, vol. 18, no. 1, p. 50. https://doi.org/10.1186/s12870-018-1266-9
doi: 10.1186/s12870-018-1266-9
pubmed: 29580214
pmcid: 5870084
Wang, M., Gao, L., Dong, S., Sun, Y., Shen, Q., and Guo, S., Role of silicon on plant-pathogen interactions, Front. Plant Sci., 2017, vol. 8, p. 701. https://doi.org/10.3389/fpls.2017.00701
doi: 10.3389/fpls.2017.00701
pubmed: 28529517
pmcid: 5418358
Saptarshi, S.R., Duschl, A., and Lopata, A.L., Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle, J. Nanobiotechnol., 2013, vol. 11, no. 1, p. 26. https://doi.org/10.1186/1477-3155-11-26