Temporal variability in tree responses to elevated atmospheric CO
CO2 enrichment
CO2 fertilization
FACE experiments
dynamic tree responses
seasonality
tree carbon budget
tree hydraulics
Journal
Plant, cell & environment
ISSN: 1365-3040
Titre abrégé: Plant Cell Environ
Pays: United States
ID NLM: 9309004
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
revised:
18
12
2020
received:
28
07
2020
accepted:
18
12
2020
pubmed:
29
12
2020
medline:
2
9
2021
entrez:
28
12
2020
Statut:
ppublish
Résumé
At leaf level, elevated atmospheric CO
Substances chimiques
Carbon Dioxide
142M471B3J
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1292-1310Informations de copyright
© 2020 John Wiley & Sons Ltd.
Références
Adam, N. R., Wall, G. W., Kimball, B. A., Idso, S. B., & Webber, A. N. (2004). Photosynthetic down-regulation over long-term CO2 enrichment in leaves of sour orange (Citrus aurantium) trees. New Phytologist, 163(2), 341-347. https://doi.org/10.1111/j.1469-8137.2004.01104.x
Agüera, E., & De la Haba, P. (2018). Leaf senescence in response to elevated atmospheric CO2 concentration and low nitrogen supply. Biologia Plantarum, 62(3), 401-408. https://doi.org/10.1007/s10535-018-0798-z
Ainsworth, E. A., Davey, P. A., Hymus, G. J., Drake, B. G., & Long, S. P. (2002). Long-term response of photosynthesis to elevated carbon dioxide in a Florida scrub-oak ecosystem. Ecological Applications, 12(5), 1267-1275. https://doi.org/10.1890/1051-0761(2002)012[1267:LTROPT]2.0.CO;2
Ainsworth, E. A., & Long, S. P. (2020). 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation. Global Change Biology, 27(1), 27-49. https://doi.org/10.1111/gcb.15375
Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant, Cell and Environment, 30(3), 258-270. https://doi.org/10.1111/j.1365-3040.2007.01641.x
Ainsworth, E. A., Rogers, A., Leakey, A. D. B., Heady, L. E., Gibon, Y., Stitt, M., & Schurr, U. (2007). Does elevated atmospheric [CO2] alter diurnal C uptake and the balance of C and N metabolites in growing and fully expanded soybean leaves? Journal of Experimental Botany, 58(3), 579-591. https://doi.org/10.1093/jxb/erl233
Allen, L. H., Kimball, B. A., Bunce, J. A., Yoshimoto, M., Harazono, Y., Baker, J. T., … White, J. W. (2020). Fluctuations of CO2 in free-air CO2 enrichment (FACE) depress plant photosynthesis, growth, and yield. Agricultural and Forest Meteorology, 284, 107899. https://doi.org/10.1016/j.agrformet.2020.107899
Asshoff, R., Zotz, G., & Körner, C. (2006). Growth and phenology of mature temperate forest trees in elevated CO2. Global Change Biology, 12(5), 848-861. https://doi.org/10.1111/j.1365-2486.2006.01133.x
Becklin, K. M., Walker, S. M., Way, D. A., & Ward, J. K. (2017). CO2 studies remain key to understanding a future world. New Phytologist, 214(1), 34-40. https://doi.org/10.1111/nph.14336
Bigras, F. J., & Bertrand, A. (2006). Responses of Picea mariana to elevated CO2 concentration during growth, cold hardening and dehardening: Phenology, cold tolerance, photosynthesis and growth. Tree Physiology, 26(7), 875-888. https://doi.org/10.1093/treephys/26.7.875
Birami, B., Nägele, T., Gattmann, M., Preisler, Y., Gast, A., Arneth, A., & Ruehr, N. K. (2020). Hot drought reduces the effects of elevated CO2 on tree water-use efficiency and carbon metabolism. New Phytologist, 226(6), 1607-1621. https://doi.org/10.1111/nph.16471
Cavender-Bares, J., Potts, M., Zacharias, E., & Bazzaz, F. A. (2000). Consequences of CO2 and light interactions for leaf phenology, growth, and senescence in Quercus rubra. Global Change Biology, 6(8), 877-887. https://doi.org/10.1046/j.1365-2486.2000.00361.x
Cech, P. G., Pepin, S., & Körner, C. (2003). Elevated CO2 reduces sap flux in mature deciduous forest trees. Oecologia, 137(2), 258-268. https://doi.org/10.1007/s00442-003-1348-7
Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., & Schwartz, M. D. (2007). Shifting plant phenology in response to global change. Trends in Ecology & Evolution, 22(7), 357-365. https://doi.org/10.1016/j.tree.2007.04.003
Collalti, A., & Prentice, I. C. (2019). Is NPP proportional to GPP? Waring's hypothesis 20 years on. Tree Physiology, 39(8), 1473-1483. https://doi.org/10.1093/treephys/tpz034
Curtis, P. S., & Teeri, J. A. (1992). Seasonal responses of leaf gas exchange to elevated carbon dioxide in Populus grandidentata. Canadian Journal of Forest Research, 22(9), 1320-1325. https://doi.org/10.1139/x92-175
Curtis, P. S., Vogel, C. S., Pregitzer, K. S., Zak, D. R., & Teeri, J. A. (1995). Interacting effects of soil fertility and atmospheric CO2 on leaf area growth and carbon gain physiology in Populus×euramericana (Dode) Guinier. New Phytologist, 129(2), 253-263. https://doi.org/10.1111/j.1469-8137.1995.tb04295.x
Darbah, J. N. T., Kubiske, M. E., Nelson, N., Kets, K., Riikonen, J., Sober, A., … Karnosky, D. F. (2010). Will photosynthetic capacity of aspen trees acclimate after long-term exposure to elevated CO2 and O3? Environmental Pollution, 158(4), 983-991. https://doi.org/10.1016/j.envpol.2009.10.022
Dawes, M. A., Zweifel, R., Dawes, N., Rixen, C., & Hagedorn, F. (2014). CO2 enrichment alters diurnal stem radius fluctuations of 36-yr-old Larix decidua growing at the alpine tree line. New Phytologist, 202(4), 1237-1248. https://doi.org/10.1111/nph.12742
De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Hickler, T., … Norby, R. J. (2013). Forest water use and water use efficiency at elevated CO2: A model-data intercomparison at two contrasting temperate forest FACE sites. Global Change Biology, 19(6), 1759-1779. https://doi.org/10.1111/gcb.12164
De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Wang, Y. P., … Norby, R. J. (2014). Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytologist, 203(3), 883-899. https://doi.org/10.1111/nph.12847
De Lucia, E. H., Drake, J. E., Thomas, R. B., & Gonzàlez-Meler, M. A. (2007). Forest carbon use efficiency: Is respiration a constant fraction of gross primary production? Global Change Biology, 13(6), 1157-1167. https://doi.org/10.1111/j.1365-2486.2007.01365.x
De Roo, L., Lauriks, F., Salomón, R. L., Oleksyn, J., & Steppe, K. (2020). Woody tissue photosynthesis increases radial stem growth of young poplar trees under ambient atmospheric CO2 but its contribution ceases under elevated CO2. Tree Physiology, 40(11), 1572-1582. https://doi.org/10.1093/treephys/tpaa085
Deng, Q., Zhou, G., Liu, J., Liu, S., Duan, H., & Zhang, D. (2010). Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China. Biogeosciences, 7, 315-328. https://doi.org/10.5194/bg-7-315-2010
Dijkstra, P., Hymus, G. J., Colavito, D., Vieglais, D. A., Cundari, C. M., & Johnson, D. P. (2002). Elevated atmospheric CO2 stimulates aboveground biomass in a fire regenerated scrub-oak ecosystem. Global Change Biology, 8(1), 90-103. https://doi.org/10.1046/j.1354-1013.2001.00458.x
Domec, J. C., Smith, D. D., & McCulloh, K. A. (2017). A synthesis of the effects of atmospheric carbon dioxide enrichment on plant hydraulics: Implications for whole-plant water use efficiency and resistance to drought. Plant, Cell & Environment, 40(6), 921-937. https://doi.org/10.1111/pce.12843
Drake, J. E., Furze, M. E., Tjoelker, M. G., Carrillo, Y., Barton, C. V. M., & Pendall, E. (2019). Climate warming and tree carbon use efficiency in a whole-tree 13 CO2 tracer study. New Phytologist, 222(3), 1313-1324. https://doi.org/10.1111/nph.15721
Drake, J. E., Gallet-Budynek, A., Hofmockel, K. S., Bernhardt, E. S., Billings, S. A., Jackson, R. B., … Finzi, A. C. (2011). Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecology Letters, 14(4), 349-357. https://doi.org/10.1111/j.1461-0248.2011.01593.x
Drake, J. E., Tjoelker, M. G., Aspinwall, M. J., Reich, P. B., Barton, C. V. M., Medlyn, B. E., & Duursma, R. A. (2016). Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis? New Phytologist, 211(3), 850-863. https://doi.org/10.1111/nph.13978
Duan, H., Ontedhu, J., Milham, P., Lewis, J. D., & Tissue, D. T. (2019). Effects of elevated carbon dioxide and elevated temperature on morphological, physiological and anatomical responses of Eucalyptus tereticornis along a soil phosphorus gradient. Tree Physiology, 39(11), 1821-1837. https://doi.org/10.1093/treephys/tpz094
Dusenge, M. E., Duarte, A. G., & Way, D. A. (2019). Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist, 221(1), 32-49. https://doi.org/10.1111/nph.15283
Duursma, R. A., Gimeno, T. E., Boer, M. M., Crous, K. Y., Tjoelker, M. G., & Ellsworth, D. S. (2016). Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric [CO2] but tracks water availability. Global Change Biology, 22(4), 1666-1676. https://doi.org/10.1111/gcb.13151
Egli, P., Maurer, S., Günthardt-Goerg, M. S., & Körner, C. (1998). Effects of elevated CO2 and soil quality on leaf gas exchange and above-ground growth in beech-spruce model ecosystems. New Phytologist, 140, 185-196. https://doi.org/10.1046/j.1469-8137.1998.00276.x
El Kohen, A., & Mousseau, M. (1994). Interactive effects of elevated CO2 and mineral nutrition on growth and CO2 exchange of sweet chestnut seedlings (Castanea sativa). Tree Physiology, 14(7-9), 679-690. https://doi.org/10.1093/treephys/14.7-8-9.679
Ellsworth, D. S., Anderson, I. C., Crous, K. Y., Cooke, J., Drake, J. E., Gherlenda, A. N., … Reich, P. B. (2017). Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nature Climate Change, 7(4), 279-282. https://doi.org/10.1038/nclimate3235
Ellsworth, D. S., Thomas, R., Crous, K. Y., Palmroth, S., Ward, E. J., Maier, C., … Oren, R. (2012). Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: A synthesis from Duke FACE. Global Change Biology, 18(1), 223-242. https://doi.org/10.1111/j.1365-2486.2011.02505.x
Epron, D., Liozon, R., & Mousseau, M. (1996). Effects of elevated CO2 concentration on leaf characteristics and photosynthetic capacity of beech (Fagus sylvatica) during the growing season. Tree Physiology, 16(4), 425-432. https://doi.org/10.1093/treephys/16.4.425
Evans, J. R., & Clarke, V. C. (2019). The nitrogen cost of photosynthesis. Journal of Experimental Botany, 70(1), 7-15. https://doi.org/10.1093/jxb/ery366
Ewert, F. (2004). Modelling plant responses to elevated CO2: How important is leaf area index? Annals of Botany, 93(6), 619-627. https://doi.org/10.1093/aob/mch101
Fatichi, S., Leuzinger, S., & Körner, C. (2014). Moving beyond photosynthesis: From carbon source to sink-driven vegetation modeling. New Phytologist, 201(4), 1086-1095. https://doi.org/10.1111/nph.12614
Fatichi, S., Leuzinger, S., Paschalis, A., Adam Langley, J., Barraclough, A. D., & Hovenden, M. J. (2016). Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proceedings of the National Academy of Sciences of the United States of America, 113(45), 12757-12762. https://doi.org/10.1073/pnas.1605036113
Ferris, R., Sabatti, M., Miglietta, F., Mills, R. F., & Taylor, G. (2001). Leaf area is stimulated in Populus by free air CO2 enrichment (POPFACE), through increased cell expansion and production. Plant, Cell and Environment, 24(3), 305-315. https://doi.org/10.1046/j.1365-3040.2001.00684.x
Flexas, J., & Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Annals of Botany, 89(2), 183-189. https://doi.org/10.1093/aob/mcf027
Fujii, J. A., & Kennedy, R. A. (1985). Seasonal changes in the photosynthetic rate in apple trees: A comparison between fruiting and nonfruiting trees. Plant Physiology, 78(3), 519-524. https://doi.org/10.1104/pp.78.3.519
Galmés, J., Aranjuelo, I., Medrano, H., & Flexas, J. (2013). Variation in Rubisco content and activity under variable climatic factors. Photosynthesis Research, 117(1-3), 73-90. https://doi.org/10.1007/s11120-013-9861-y
Gamage, D., Thompson, M., Sutherland, M., Hirotsu, N., Makino, A., & Seneweera, S. (2018). New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant, Cell & Environment, 41(6), 1233-1246. https://doi.org/10.1111/pce.13206
Ge, Q., Wang, H., Rutishauser, T., & Dai, J. (2015). Phenological response to climate change in China: A meta-analysis. Global Change Biology, 21(1), 265-274. https://doi.org/10.1111/gcb.12648
Gill, A. L., Gallinat, A. S., Sanders-DeMott, R., Rigden, A. J., Short Gianotti, D. J., Mantooth, J. A., & Templer, P. H. (2015). Changes in autumn senescence in northern hemisphere deciduous trees: A meta-analysis of autumn phenology studies. Annals of Botany, 116(6), 875-888. https://doi.org/10.1093/aob/mcv055
Gimeno, T. E., Crous, K. Y., Cooke, J., O'Grady, A. P., Ósvaldsson, A., Medlyn, B. E., & Ellsworth, D. S. (2016). Conserved stomatal behaviour under elevated CO2 and varying water availability in a mature woodland. Functional Ecology, 30(5), 700-709. https://doi.org/10.1111/1365-2435.12532
Gimeno, T. E., McVicar, T. R., O'Grady, A. P., Tissue, D. T., & Ellsworth, D. S. (2018). Elevated CO2 did not affect the hydrological balance of a mature native Eucalyptus woodland. Global Change Biology, 24(7), 3010-3024. https://doi.org/10.1111/gcb.14139
Goodfellow, J., Eamus, D., & Duff, G. (1997). Diurnal and seasonal changes in the impact of CO2 enrichment on assimilation, stomatal conductance and growth in a long-term study of Mangifera indica in the wet-dry tropics of Australia. Tree Physiology, 17(5), 291-299. https://doi.org/10.1093/treephys/17.5.291
Greer, D. H. (2015). Seasonal changes in the photosynthetic response to CO2 and temperature in apple (Malus domestica cv. ‘Red gala’) leaves during a growing season with a high temperature event. Functional Plant Biology, 42(3), 309-324. https://doi.org/10.1071/FP14208
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., … McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226(6), 1550-1566. https://doi.org/10.1111/nph.16485
Gunderson, C. A., Norby, R. J., & Wullschleger, S. D. (1993). Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated CO2: No loss of photosynthetic enhancement. Plant, Cell & Environment, 16(7), 797-807. https://doi.org/10.1111/j.1365-3040.1993.tb00501.x
Hasper, T. B., Wallin, G., Lamba, S., Hall, M., Jaramillo, F., Laudon, H., … Uddling, J. (2016). Water use by Swedish boreal forests in a changing climate. Functional Ecology, 30(5), 690-699. https://doi.org/10.1111/1365-2435.12546
Herrick, J. D., Maherali, H., & Thomas, R. B. (2004). Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment. New Phytologist, 162(2), 387-396. https://doi.org/10.1111/j.1469-8137.2004.01045.x
Herrick, J. D., & Thomas, R. B. (2003). Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations. Tree Physiology, 23(2), 109-118. https://doi.org/10.1093/treephys/23.2.109
Hogan, K. P., Whitehead, D., Kallaracka, J., Buwalda, J. G., Meekings, J., & Rogers, G. N. D. (1996). Photosynthetic activity of leaves of Pinus radiata and Nothofagus fusca after 1 year of growth at elevated CO2. Australian Journal of Plant Physiology, 23(5), 623-630. https://doi.org/10.1071/PP9960623
Hymus, G. J., Johnson, D. P., Dore, S., Anderson, H. P., Hinkle, C. R., & Drake, B. G. (2003). Effects of elevated atmospheric CO2 on net ecosystem CO2 exchange of a scrub-oak ecosystem. Global Change Biology, 9(12), 1802-1812. https://doi.org/10.1111/j.1365-2486.2003.00675.x
Hymus, G. J., Pontailler, J. Y., Li, J., Stiling, P., Hinkle, C. R., & Drake, B. G. (2002). Seasonal variability in the effect of elevated CO2 on ecosystem leaf area index in a scrub-oak ecosystem. Global Change Biology, 8(10), 931-940. https://doi.org/10.1046/j.1365-2486.2002.00526.x
IPCC (2018). Summary for policymakers. In V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, et al. (Eds.), Global warming of 1.5°C. an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, 32 pp. Geneva, Switzerland: World Meteorological Organization.
Jach, M. E., & Ceulemans, R. (1999). Effects of elevated atmospheric CO2 on phenology, growth and crown structure of scots pine (Pinus sylvestris) seedlings after two years of exposure in the field. Tree Physiology, 19(4-5), 289-300. https://doi.org/10.1093/treephys/19.4-5.289
Jach, M. E., & Ceulemans, R. (2000). Effects of season, needle age and elevated atmospheric CO2 on photosynthesis in scots pine (Pinus sylvestris). Tree Physiology, 20(3), 145-157. https://doi.org/10.1093/treephys/20.3.145
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C., Barton, C. V. M., … Ellsworth, D. S. (2020). The fate of carbon in a mature forest under carbon dioxide enrichment. Nature, 580(7802), 227-231. https://doi.org/10.1038/s41586-020-2128-9
Johnson, D. W., Thomas, R. B., Griffin, K. L., Tissue, D. T., Ball, J. T., Strain, B. R., & Walker, R. F. (1998). Effects of carbon dioxide and nitrogen on growth and nitrogen uptake in ponderosa and loblolly pine. Journal of Environmental Quality, 27(2), 414-425. https://doi.org/10.2134/jeq1998.00472425002700020024x
Jolliffe, P. A., & Ehret, D. L. (1985). Growth of bean plants at elevated carbon dioxide concentrations. Canadian Journal of Botany, 63(11), 2021-2025. https://doi.org/10.1139/b85-282
Jump, A. S., Ruiz-Benito, P., Greenwood, S., Allen, C. D., Kitzberger, T., Fensham, R., … Lloret, F. (2017). Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Global Change Biology, 23(9), 3742-3757. https://doi.org/10.1111/gcb.13636
Keel, S. G., Pepin, S., Leuzinger, S., & Körner, C. (2007). Stomatal conductance in mature deciduous forest trees exposed to elevated CO2. Trees - Structure and Function, 21(2), 151-159. https://doi.org/10.1007/s00468-006-0106-y
Kimball, B. A., Idso, S. B., Johnson, S., & Rillig, M. C. (2007). Seventeen years of carbon dioxide enrichment of sour orange trees: Final results. Global Change Biology, 13(10), 2171-2183. https://doi.org/10.1111/j.1365-2486.2007.01430.x
Klein, T., Bader, M. K. F., Leuzinger, S., Mildner, M., Schleppi, P., Siegwolf, R. T. W., & Körner, C. (2016). Growth and carbon relations of mature Picea abies trees under 5 years of free-air CO2 enrichment. Journal of Ecology, 104(6), 1720-1733. https://doi.org/10.1111/1365-2745.12621
Koike, T., Mao, Q., Inada, N., Kawaguchi, K., Hoshika, Y., Kita, K., & Watanabe, M. (2012). Growth and photosynthetic responses of cuttings of a hybrid larch (Larix gmelinii var. Japonica x L. kaempferi) to elevated ozone and/or carbon dioxide. Asian Journal of Atmospheric Environment, 6(2), 104-110. https://doi.org/10.5572/ajae.2012.6.2.104
Körner, C. (2006). Plant CO2 responses: An issue of definition, time and resource supply. New Phytologist, 172(3), 393-411. https://doi.org/10.1111/j.1469-8137.2006.01886.x
Körner, C. (2015). Paradigm shift in plant growth control. Current Opinion in Plant Biology, 25, 107-114. https://doi.org/10.1016/j.pbi.2015.05.003
Körner, C. (2019). No need for pipes when the well is dry-A comment on hydraulic failure in trees. Tree Physiology, 39(5), 695-700. https://doi.org/10.1093/treephys/tpz030
Kubiske, M. E., Pregitzer, K. S., Zak, D. R., & Mikan, C. J. (1998). Growth and C allocation of Populus tremuloides genotypes in response to atmospheric CO2 and soil N availability. New Phytologist, 140(2), 251-260. https://doi.org/10.1046/j.1469-8137.1998.00264.x
Kumar, S., Chaitanya, B. S. K., Ghatty, S., & Reddy, A. R. (2014). Growth, reproductive phenology and yield responses of a potential biofuel plant, Jatropha curcas grown under projected 2050 levels of elevated CO2. Physiologia Plantarum, 152(3), 501-519. https://doi.org/10.1111/ppl.12195
Leuzinger, S., & Körner, C. (2007). Water savings in mature deciduous forest trees under elevated CO2. Global Change Biology, 13(12), 2498-2508. https://doi.org/10.1111/j.1365-2486.2007.01467.x
Lewis, J. D., Tissue, D. T., & Strain, B. R. (1996). Seasonal response of photosynthesis to elevated CO2 in loblolly pine (Pinus taeda L.) over two growing seasons. Global Change Biology, 2(2), 103-114. https://doi.org/10.1111/j.1365-2486.1996.tb00055.x
Li, J. H., Dijkstra, P., Hinkle, C. R., Wheeler, R. M., & Drake, B. G. (1999). Photosynthetic acclimation to elevated atmospheric CO2 concentration in the Florida scrub-oak species Quercus geminata and Quercus myrtifolia growing in their native environment. Tree Physiology, 19(4-5), 229-234. https://doi.org/10.1093/treephys/19.4-5.229
Li, J. H., Dugas, W. A., Hymus, G. J., Johnson, D. P., Hinkle, C. R., Drake, B. G., & Hungate, B. A. (2003). Direct and indirect effects of elevated CO2 on transpiration from Quercus myrtifolia in a scrub-oak ecosystem. Global Change Biology, 9, 96-105. https://doi.org/10.1046/j.1365-2486.2003.00557.x
Li, L., Wang, X., & Manning, W. J. (2019). Effects of elevated CO2 on leaf senescence, leaf nitrogen resorption, and late-season photosynthesis in Tilia americana L. Frontiers in Plant Science, 10, 1217. https://doi.org/10.3389/fpls.2019.01217
Li, Q., Lu, X., Wang, Y., Huang, X., Cox, P. M., & Luo, Y. (2018). Leaf area index identified as a major source of variability in modeled CO2 fertilization. Biogeosciences, 15(22), 6909-6925. https://doi.org/10.5194/bg-15-6909-2018
Li, Y., Liu, J., Chen, G., Zhou, G., Huang, W., Yin, G., … Li, Y. (2013). Water-use efficiency of four native trees under CO2 enrichment and N addition in subtropical model forest ecosystems. Journal of Plant Ecology, 8(4), 411-419. https://doi.org/10.1093/jpe/rtu022
Liberloo, M., Calfapietra, C., Lukac, M., Godbold, D., Luo, Z. B., Polle, A., … Ceulemans, R. (2006). Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world. Global Change Biology, 12(6), 1094-1106. https://doi.org/10.1111/j.1365-2486.2006.01118.x
Liberloo, M., Dillen, S. Y., Calfapietra, C., Marinari, S., Zhi, B. L., De Angelis, P., & Ceulemans, R. (2005). Elevated CO2 concentration, fertilization and their interaction: Growth stimulation in a short-rotation poplar coppice (EUROFACE). Tree Physiology, 25(2), 179-189. https://doi.org/10.1093/treephys/25.2.179
Liberloo, M., Tulva, I., Raïm, O., Kull, O., & Ceulemans, R. (2007). Photosynthetic stimulation under long-term CO2 enrichment and fertilization is sustained across a closed Populus canopy profile (EUROFACE). New Phytologist, 173(3), 537-549. https://doi.org/10.1111/j.1469-8137.2006.01926.x
Liu, J., Zhou, G., Xu, Z., Duan, H., Li, Y., & Zhang, D. (2011). Photosynthesis acclimation, leaf nitrogen concentration, and growth of four tree species over 3 years in response to elevated carbon dioxide and nitrogen treatment in subtropical China. Journal of Soils and Sediments, 11(7), 1155-1164. https://doi.org/10.1007/s11368-011-0398-4
Lockhart, J. A. (1965). An analysis of irreversible plant cell elongation. Journal of Theoretical Biology, 8(2), 264-275. https://doi.org/10.1016/0022-5193(65)90077-9
Long, S. P., Ainsworth, E. A., Rogers, A., & Ort, D. R. (2004). Rising atmospheric carbon dioxide: Plants FACE the future. Annual Review of Plant Biology, 55(1), 591-628. https://doi.org/10.1146/annurev.arplant.55.031903.141610
Maherali, H., & Delucia, E. H. (2000). Interactive effects of elevated CO2 and temperature on water transport in ponderosa pine. American Journal of Botany, 87(2), 243-249. https://doi.org/10.2307/2656912
Martínez-Vilalta, J., & Garcia-Forner, N. (2017). Water potential regulation, stomatal behaviour and hydraulic transport under drought: Deconstructing the iso/anisohydric concept. Plant, Cell & Environment, 40(6), 962-976. https://doi.org/10.1111/pce.12846
McCarthy, H. R., Oren, R., Finzi, A. C., Ellsworth, D. S., Kim, H. S., Johnsen, K. H., & Millar, B. (2007). Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2. Global Change Biology, 13(12), 2479-2497. https://doi.org/10.1111/j.1365-2486.2007.01455.x
McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., … Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178(4), 719-739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
Menezes-Silva, P. E., Loram-Lourenço, L., Alves, R. D. F. B., Sousa, L. F., Almeida, S. E. d. S., & Farnese, F. S. (2019). Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecology and Evolution, 9(20), 11979-11999. https://doi.org/10.1002/ece3.5663
Moore, D. J. P., Aref, S., Ho, R. M., Pippen, J. S., Hamilton, J. G., & De Lucia, E. H. (2006). Annual basal area increment and growth duration of Pinus taeda in response to eight years of free-air carbon dioxide enrichment. Global Change Biology, 12(8), 1367-1377. https://doi.org/10.1111/j.1365-2486.2006.01189.x
Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M., & Gibon, Y. (2011). Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany, 62(6), 1715-1729. https://doi.org/10.1093/jxb/erq438
Mund, M., Herbst, M., Knohl, A., Matthäus, B., Schumacher, J., Schall, P., … Ammer, C. (2020). It is not just a ‘trade-off’: Indications for sink- and source-limitation to vegetative and regenerative growth in an old-growth beech forest. New Phytologist, 226(1), 111-125. https://doi.org/10.1111/nph.16408
Murthy, R., Zarnoch, S. J., & Dougherty, P. M. (1997). Seasonal trends of light-saturated net photosynthesis and stomatal conductance of loblolly pine trees grown in contrasting environments of nutrition, water and carbon dioxide. Plant, Cell and Environment, 20(5), 558-568. https://doi.org/10.1111/j.1365-3040.1997.00085.x
NOAA. (2020). Global Monitoring Laboratory - Global Greenhouse Gas Reference Network. Retrieved December 6, 2020 from https://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html
Norby, R. J., De Kauwe, M. G., Domingues, T. F., Duursma, R. A., Ellsworth, D. S., Goll, D. S., … Zaehle, S. (2016). Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytologist, 209(1), 17-28. https://doi.org/10.1111/nph.13593
Norby, R. J., Sholtis, J. D., Gunderson, C. A., & Jawdy, S. S. (2003). Leaf dynamics of a deciduous forest canopy: No response to elevated CO2. Oecologia, 136(4), 574-584. https://doi.org/10.1007/s00442-003-1296-2
Norby, R. J., & Zak, D. R. (2011). Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annual Review of Ecology, Evolution, and Systematics, 42(1), 181-203. https://doi.org/10.1146/annurev-ecolsys-102209-144647
Pandey, R., Zinta, G., AbdElgawad, H., Ahmad, A., Jain, V., & Janssens, I. A. (2015). Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotechnology Advances, 33(3-4), 303-316. https://doi.org/10.1016/j.biotechadv.2015.03.011
Pantin, F., Simonneau, T., & Muller, B. (2012). Coming of leaf age: Control of growth by hydraulics and metabolics during leaf ontogeny. New Phytologist, 196(2), 349-366. https://doi.org/10.1111/j.1469-8137.2012.04273.x
Paschalis, A., Katul, G. G., Fatichi, S., Palmroth, S., & Way, D. A. (2017). On the variability of the ecosystem response to elevated atmospheric CO2 across spatial and temporal scales at the Duke Forest FACE experiment. Agricultural and Forest Meteorology, 232, 367-383. https://doi.org/10.1016/j.agrformet.2016.09.003
Peltola, H., Kilpeläinen, A., & Kellomäki, S. (2002). Diameter growth of scots pine (Pinus sylvestris) trees grown at elevated temperature and carbon dioxide concentration under boreal conditions. Tree Physiology, 22(14), 963-972. https://doi.org/10.1093/treephys/22.14.963
Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., … Zhu, X. (2019). Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 25(6), 1922-1940. https://doi.org/10.1111/gcb.14619
Piao, S., Luyssaert, S., Ciais, P., Janssens, I. A., Chen, A., Chao, C. A. O., … Wang, S. (2010). Forest annual carbon cost: A global-scale analysis of autotrophic respiration. Ecology, 91(3), 652-661. https://doi.org/10.1890/08-2176.1
Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193(1), 30-50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
Pritchard, S. G., Rogers, H. H., Prior, S. A., & Peterson, C. M. (1999). Elevated CO2 and plant structure: A review. Global Change Biology, 5, 807-837. https://doi.org/10.1046/j.1365-2486.1999.00268.x
Purcell, C., Batke, S. P., Yiotis, C., Caballero, R., Soh, W. K., Murray, M., & McElwain, J. C. (2018). Increasing stomatal conductance in response to rising atmospheric CO2. Annals of Botany, 121(6), 1137-1149. https://doi.org/10.1093/aob/mcx208
Quentin, A. G., Crous, K. Y., Barton, C. V. M., & Ellsworth, D. S. (2015). Photosynthetic enhancement by elevated CO2 depends on seasonal temperatures for warmed and non-warmed Eucalyptus globulus trees. Tree Physiology, 35(11), 1249-1263. https://doi.org/10.1093/treephys/tpv110
Radoglou, K. M., & Jarvis, P. G. (1990). Effects of CO2 enrichment on four poplar clones. II. Leaf surface properties. Annals of Botany, 65(6), 627-632. https://doi.org/10.1093/oxfordjournals.aob.a087979
Rakocevic, M., Braga, K. S. M., Batista, E. R., Maia, A. H. N., Scholz, M. B. S., & Filizola, H. F. (2020). The vegetative growth assists to reproductive responses of Arabic coffee trees in a long-term FACE experiment. Plant Growth Regulation, 91(2), 305-316. https://doi.org/10.1007/s10725-020-00607-2
Reddy, A. R., Rasineni, G. K., & Raghavendra, A. S. (2010). The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Current Science, 99(1), 46-57.
Reich, P. B., Oleksyn, J., & Wright, I. J. (2009). Leaf phosphorus influences the photosynthesis-nitrogen relation: A cross-biome analysis of 314 species. Oecologia, 160(2), 207-212. https://doi.org/10.1007/s00442-009-1291-3
Rey, A., & Jarvis, P. G. (1998). Long-term photosynthetic acclimation to increased atmospheric CO2 concentration in young birch (Betula pendula) trees. Tree Physiology, 18(7), 441-450. https://doi.org/10.1093/treephys/18.7.441
Ribeiro, R. V., Machado, E. C., Habermann, G., Santos, M. G., & Oliveira, R. F. (2012). Seasonal effects on the relationship between photosynthesis and leaf carbohydrates in orange trees. Functional Plant Biology, 39(6), 471-480. https://doi.org/10.1071/FP11277
Riikonen, J., Holopainen, T., Oksanen, E., & Vapaavuori, E. (2005). Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field. Tree Physiology, 25(5), 621-632. https://doi.org/10.1093/treephys/25.5.621
Riikonen, J., Lindsberg, M. M., Holopainen, T., Oksanen, E., Lappi, J., Peltonen, P., & Vapaavuori, E. (2004). Silver birch and climate change: Variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Tree Physiology, 24(11), 1227-1237. https://doi.org/10.1093/treephys/24.11.1227
Riikonen, J., Oksanen, E., Peltonen, P., Holopainen, T., & Vapaavuori, E. (2003). Seasonal variation in physiological characteristics of two silver birch clones in the field. Canadian Journal of Forest Research, 33(11), 2164-2176. https://doi.org/10.1139/x03-136
Riikonen, J., Syrjälä, L., Tulva, I., Mänd, P., Oksanen, E., Poteri, M., & Vapaavuori, E. (2008). Stomatal characteristics and infection biology of Pyrenopeziza betulicola in Betula pendula trees grown under elevated CO2 and O3. Environmental Pollution, 156(2), 536-543. https://doi.org/10.1016/j.envpol.2008.01.008
Sala, A., Woodruff, D. R., & Meinzer, F. C. (2012). Carbon dynamics in trees: Feast or famine? Tree Physiology, 32(6), 764-775. https://doi.org/10.1093/treephys/tpr143
Salomón, R. L., Steppe, K., Crous, K. Y., Noh, N. J., & Ellsworth, D. S. (2019). Elevated CO2 does not affect stem CO2 efflux nor stem respiration in a dry Eucalyptus woodland, but it shifts the vertical gradient in xylem [CO2]. Plant, Cell & Environment, 42(7), 2151-2164. https://doi.org/10.1111/pce.13550
Samuelson, L. J., & Seiler, J. R. (1994). Red spruce gas exchange in response to elevated CO2, water stress, and soil fertility treatments. Canadian Journal of Forest Research, 24(5), 954-959. https://doi.org/10.1139/x94-125
Sanches, R. F. E., Centeno, d. C. D., Braga, M. R., & da Silva, E. A. (2020). Impact of high atmospheric CO2 concentrations on the seasonality of water-related processes, gas exchange, and carbohydrate metabolism in coffee trees under field conditions. Climatic Change, 162, 1231-1248. https://doi.org/10.1007/s10584-020-02741-2
Seiler, T. J., Rasse, D. P., Li, J., Dijkstra, P., Anderson, H. P., Johnson, D. P., … Drake, B. G. (2009). Disturbance, rainfall and contrasting species responses mediated aboveground biomass response to 11 years of CO2 enrichment in a Florida scrub-oak ecosystem. Global Change Biology, 15, 356-367. https://doi.org/10.1111/j.1365-2486.2008.01740.x
Sholtis, J. D., Gunderson, C. A., Norby, R. J., & Tissue, D. T. (2004). Persistent stimulation of photosynthesis by elevated CO2 in a sweetgum (Liquidambar styraciflua) forest stand. New Phytologist, 162(2), 343-354. https://doi.org/10.1111/j.1469-8137.2004.01028.x
Sigurdsson, B. D. (2001a). Elevated [CO2] and nutrient status modified leaf phenology and growth rhythm of young Populus trichocarpa trees in a 3-year field study. Trees - Structure and Function, 15(7), 403-413. https://doi.org/10.1007/s004680100121
Sigurdsson, B. D. (2001b). Environmental control of carbon uptake and growth in a Populus trichocarpa plantation in Iceland. Swedish University of Agricultural Sciences.
Sigurdsson, B. D., Medhurst, J. L., Wallin, G., Eggertsson, O., & Linder, S. (2013). Growth of mature boreal Norway spruce was not affected by elevated [CO2] and/or air temperature unless nutrient availability was improved. Tree Physiology, 33(11), 1192-1205. https://doi.org/10.1093/treephys/tpt043
Sigurdsson, B. D., Roberntz, P., Freeman, M., Naess, M., Saxe, H., Thorgeirsson, H., & Linder, S. (2002). Impact studies on Nordic forests: Effects of elevated CO2 and fertilization on gas exchange. Canadian Journal of Forest Research, 32(5), 779-788. https://doi.org/10.1139/x01-114
Sigurdsson, B. D., Thorgeirsson, H., & Linder, S. (2001). Growth and dry-matter partitioning of young Populus trichocarpa in response to carbon dioxide concentration and mineral nutrient availability. Tree Physiology, 21(12-13), 941-950. https://doi.org/10.1093/treephys/21.12-13.941
Smith, N. G. (2017). Plant respiration responses to elevated CO2: An overview from cellular processes to global impacts. In G. Tcherkez & J. Ghashghaie (Eds.), Plant respiration: Metabolic fluxes and carbon balance (pp. 69-87). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-68703-2_4
Sonnleitner, M. A., Günthardt-Goerg, M. S., Bucher-Wallin, I. K., Attinger, W., Reis, S., & Schulin, R. (2001). Influence of soil type on the effects of elevated atmospheric CO2 and N deposition on the water balance and growth of a young spruce and beech forest. Water, Air, and Soil Pollution, 126, 271-290. https://doi.org/10.1023/A:1005244916109
Sperry, J. S. (2000). Hydraulic constraints on plant gas exchange. Agricultural and Forest Meteorology, 104(1), 13-23. https://doi.org/10.1016/S0168-1923(00)00144-1
Spinnler, D., Egli, P., & Körner, C. (2003). Provenance effects and allometry in beech and spruce under elevated CO2 and nitrogen on two different forest soils. Basic and Applied Ecology, 4(5), 467-478. https://doi.org/10.1078/1439-1791-00175
Springer, C. J., & Thomas, R. B. (2007). Photosynthetic responses of forest understory tree species to long-term exposure to elevated carbon dioxide concentration at the Duke Forest FACE experiment. Tree Physiology, 27(1), 25-32. https://doi.org/10.1093/treephys/27.1.25
Steppe, K., Sterck, F., & Deslauriers, A. (2015). Diel growth dynamics in tree stems: Linking anatomy and ecophysiology. Trends in Plant Science, 20(6), 335-343. https://doi.org/10.1016/j.tplants.2015.03.015
Taylor, G., Tallis, M. J., Giardina, C. P., Percy, K. E., Miglietta, F., Gupta, P. S., … Karnosky, D. F. (2008). Future atmospheric CO2 leads to delayed autumnal senescence. Global Change Biology, 14(2), 264-275. https://doi.org/10.1111/j.1365-2486.2007.01473.x
Taylor, G., Tricker, P. J., Zhang, F. Z., Alston, V. J., Miglietta, F., & Kuzminsky, E. (2003). Spatial and temporal effects of free-air CO2 enrichment (POPFACE) on leaf growth, cell expansion, and cell production in a closed canopy of poplar. Plant Physiology, 131(1), 177-185. https://doi.org/10.1104/pp.011296
Temperton, V. M., Grayston, S. J., Jackson, G., Barton, C. V. M., Millard, P., & Jarvis, P. G. (2003). Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment. Tree Physiology, 23(15), 1051-1059. https://doi.org/10.1093/treephys/23.15.1051
Tingey, D. T., Johnson, M. G., Phillips, D. L., Johnson, D. W., & Ball, J. T. (1996). Effects of elevated CO2 and nitrogen on the synchrony of shoot and root growth in ponderosa pine. Tree Physiology, 16(11-12), 905-914. https://doi.org/10.1093/treephys/16.11-12.905
Tissue, D. T., Griffin, K. L., & Ball, J. T. (1999). Photosynthetic adjustment in field-grown ponderosa pine trees after six years of exposure to elevated CO2. Tree Physiology, 19(4-5), 221-228. https://doi.org/10.1093/treephys/19.4-5.221
Tissue, D. T., Thomas, R. B., & Strain, B. R. (1997). Atmospheric CO2 enrichment increases growth and photosynthesis of Pinus taeda: A 4 year experiment in the field. Plant, Cell and Environment, 20(9), 1123-1134. https://doi.org/10.1046/j.1365-3040.1997.d01-140.x
Tixier, A., Guzmán-Delgado, P., Sperling, O., Amico Roxas, A., Laca, E., & Zwieniecki, M. A. (2020). Comparison of phenological traits, growth patterns, and seasonal dynamics of non-structural carbohydrate in Mediterranean tree crop species. Scientific Reports, 10(1), 347. https://doi.org/10.1038/s41598-019-57016-3
Tor-ngern, P., Oren, R., Ward, E. J., Palmroth, S., Mccarthy, H. R., & Domec, J. C. (2015). Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy. New Phytologist, 205(2), 518-525. https://doi.org/10.1111/nph.13148
Tricker, P. J., Pecchiari, M., Bunn, S. M., Vaccari, F. P., Peressotti, A., Miglietta, F., & Taylor, G. (2009). Water use of a bioenergy plantation increases in a future high CO2 world. Biomass and Bioenergy, 33(2), 200-208. https://doi.org/10.1016/j.biombioe.2008.05.009
Tricker, P. J., Trewin, H., Kull, O., Clarkson, G. J. J., Eensalu, E., Tallis, M. J., … Taylor, G. (2005). Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2. Oecologia, 143(4), 652-660. https://doi.org/10.1007/s00442-005-0025-4
Turnbull, M. H., Tissue, D. T., Griffin, K. L., Rogers, G. N. D., & Whitehead, D. (1998). Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D. Don. Is related to age of needles. Plant, Cell and Environment, 21(10), 1019-1028. https://doi.org/10.1046/j.1365-3040.1998.00374.x
Uddling, J., Teclaw, R. M., Kubiske, M. E., Pregitzer, K. S., & Ellsworth, D. S. (2008). Sap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone. Tree Physiology, 28(8), 1231-1243. https://doi.org/10.1093/treephys/28.8.1231
Uddling, J., & Wallin, G. (2012). Interacting effects of elevated CO2 and weather variability on photosynthesis of mature boreal Norway spruce agree with biochemical model predictions. Tree Physiology, 32(12), 1509-1521. https://doi.org/10.1093/treephys/tps086
Urban, O., Hrstka, M., Holub, P., Veselá, B., Večeřová, K., Novotná, K., … Klem, K. (2019). Interactive effects of ultraviolet radiation and elevated CO2 concentration on photosynthetic characteristics of European beech saplings during the vegetation season. Plant Physiology and Biochemistry, 134, 20-30. https://doi.org/10.1016/j.plaphy.2018.08.026
Valentini, R., Matteucci, G., Dolman, A. J., Schulze, E. D., Rebmann, C., Moors, E. J., … Jarvis, P. G. (2000). Respiration as the main determinant of carbon balance in European forests. Nature, 404(6780), 861-865. https://doi.org/10.1038/35009084
Vaz, M., Cochard, H., Gazarini, L., Graça, J., Chaves, M. M., & Pereira, J. S. (2012). Cork oak (Quercus suber L.) seedlings acclimate to elevated CO2 and water stress: Photosynthesis, growth, wood anatomy and hydraulic conductivity. Trees - Structure and Function, 26(4), 1145-1157. https://doi.org/10.1007/s00468-012-0691-x
Wang, K. Y., & Kellomaki, S. (1997). Stomatal conductance and transpiration in shoots of scots pine after 4-year exposure to elevated CO2 and temperature. Canadian Journal of Botany, 75(4), 552-561. https://doi.org/10.1139/b97-061
Wang, K. Y., Kellomaki, S., & Laitinen, K. (1995). Effects of needle age, long-term temperature and CO2 treatments on the photosynthesis of scots pine. Tree Physiology, 15(4), 211-218. https://doi.org/10.1093/treephys/15.4.211
Wang, K. Y., Kellomäki, S., Zha, T., & Peltola, H. (2005). Annual and seasonal variation of sap flow and conductance of pine trees grown in elevated carbon dioxide and temperature. Journal of Experimental Botany, 56(409), 155-165. https://doi.org/10.1093/jxb/eri013
Ward, E. J., Oren, R., Bell, D. M., Clark, J. S., McCarthy, H. R., Kim, H. S., & Domec, J. C. (2013). The effects of elevated CO2 and nitrogen fertilization on stomatal conductance estimated from 11 years of scaled sap flux measurements at Duke FACE. Tree Physiology, 33(2), 135-151. https://doi.org/10.1093/treephys/tps118
Warren, J. M., Jensen, A. M., Medlyn, B. E., Norby, R. J., & Tissue, D. T. (2015). Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment. AoB Plants, 7(1), 1-13. https://doi.org/10.1093/aobpla/plu074
Warren, J. M., Norby, R. J., Wullschleger, S. D., & Oren, R. (2011). Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiology, 31(2), 117-130. https://doi.org/10.1093/treephys/tpr002
Watanabe, M., Watanabe, Y., Kitaoka, S., Utsugi, H., Kita, K., & Koike, T. (2011). Growth and photosynthetic traits of hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) under elevated CO2 concentration with low nutrient availability. Tree Physiology, 31(9), 965-975. https://doi.org/10.1093/treephys/tpr059
Watanabe, Y., Tobita, H., Kitao, M., Maruyama, Y., Choi, D., Sasa, K., … Koike, T. (2008). Effects of elevated CO2 and nitrogen on wood structure related to water transport in seedlings of two deciduous broad-leaved tree species. Trees, 22, 403-411. https://doi.org/10.1007/s00468-007-0201-8
Way, D. A., Stinziano, J. R., Berghoff, H., & Oren, R. (2017). How well do growing season dynamics of photosynthetic capacity correlate with leaf biochemistry and climate fluctuations? Tree Physiology, 37(7), 879-888. https://doi.org/10.1093/treephys/tpx086
Wu, J., Albert, L. P., Lopes, A. P., Restrepo-Coupe, N., Hayek, M., Wiedemann, K. T., … Saleska, S. R. (2016). Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science, 351(6276), 972-976. https://doi.org/10.1126/science.aad5068
Wujeska-Klause, A., Crous, K. Y., Ghannoum, O., & Ellsworth, D. S. (2019). Leaf age and eCO2 both influence photosynthesis by increasing light harvesting in mature Eucalyptus tereticornis at EucFACE. Environmental and Experimental Botany, 167, 103857. https://doi.org/10.1016/j.envexpbot.2019.103857
Wullschleger, S. D., Gunderson, C. A., Hanson, P. J., Wilson, K. B., & Norby, R. J. (2002). Sensitivity of stomatal and canopy conductance to elevated CO2 concentration - interacting variables and perspectives of scale. New Phytologist, 153(3), 485-496. https://doi.org/10.1046/j.0028-646X.2001.00333.x
Wullschleger, S. D., & Norby, R. J. (2001). Sap velocity and canopy transpiration in a sweetgum stand exposed to free-air CO2 enrichment (FACE). New Phytologist, 150(2), 489-498. https://doi.org/10.1046/j.1469-8137.2001.00094.x
Xu, J., Lv, Y., Liu, X., Wei, Q., Qi, Z., Yang, S., & Liao, L. (2019). A general non-rectangular hyperbola equation for photosynthetic light response curve of rice at various leaf ages. Scientific Reports, 9, 9909. https://doi.org/10.1038/s41598-019-46248-y
Xu, L., & Baldocchi, D. D. (2003). Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiology, 23(13), 865-877. https://doi.org/10.1093/treephys/23.13.865
Xu, Z., Jiang, Y., Jia, B., & Zhou, G. (2016). Elevated-CO2 response of stomata and its dependence on environmental factors. Frontiers in Plant Science, 7, 657. https://doi.org/10.3389/fpls.2016.00657
Yazaki, K., Ishida, S., Kawagishi, T., Fukatsu, E., Maruyama, Y., Kitao, M., … Funada, R. (2004). Effects of elevated CO2 concentration on growth, annual ring structure and photosynthesis in Larix kaempferi seedlings. Tree Physiology, 24(9), 941-949. https://doi.org/10.1093/treephys/24.9.941
Zotz, G., Pepin, S., & Körner, C. (2005). No down-regulation of leaf photosynthesis in mature forest trees after three years of exposure to elevated CO2. Plant Biology, 7(4), 369-374. https://doi.org/10.1055/s-2005-837635