Mouse models of atopic dermatitis: a critical reappraisal.


Journal

Experimental dermatology
ISSN: 1600-0625
Titre abrégé: Exp Dermatol
Pays: Denmark
ID NLM: 9301549

Informations de publication

Date de publication:
03 2021
Historique:
revised: 17 12 2020
received: 09 07 2020
accepted: 17 12 2020
pubmed: 29 12 2020
medline: 25 2 2022
entrez: 28 12 2020
Statut: ppublish

Résumé

Mouse models for atopic dermatitis (AD) are an indispensable preclinical research tool for testing new candidate AD therapeutics and for interrogating AD pathobiology in vivo. In this Viewpoint, we delineate why, unfortunately, none of the currently available so-called "AD" mouse models satisfactorily reflect the clinical complexity of human AD, but imitate more "allergic" or "irriant" contact dermatitis conditions. This limits the predictive value of AD models for clinical outcomes of new tested candidate AD therapeutics and the instructiveness of mouse models for human AD pathophysiology research. Here, we propose to initiate a rational debate on the minimal criteria that a mouse model should meet in order to be considered relevant for human AD. We suggest that valid AD models should at least meet the following criteria: (a) an AD-like epidermal barrier defect with reduced filaggrin expression along with hyperproliferation, hyperplasia; (b) increased epidermal expression of thymic stromal lymphopoietin (TSLP), periostin and/or chemokines such as TARC (CCL17); (c) a characteristic dermal immune cell infiltrate with overexpression of some key cytokines such as IL-4, IL-13, IL-31 and IL-33; (d) distinctive "neurodermatitis" features (sensory skin hyperinnervation, defective beta-adrenergic signalling, neurogenic skin inflammation and triggering or aggravation of AD-like skin lesions by perceived stress); and (e) response of experimentally induced skin lesions to standard AD therapy. Finally, we delineate why humanized AD mouse models (human skin xenotransplants on SCID mice) offer a particularly promising preclinical research alternative to the currently available "AD" mouse models.

Identifiants

pubmed: 33368555
doi: 10.1111/exd.14270
doi:

Substances chimiques

Biomarkers 0
Haptens 0
calcipotriene 143NQ3779B
Ovalbumin 9006-59-1
Calcitriol FXC9231JVH

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

319-336

Informations de copyright

© 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Références

Ahn K, Kim BE, Kim J, Leung DY. Recent advances in atopic dermatitis. Curr Opin Immunol. 2020;66:14-21.
Tamagawa-Mineoka R, Katoh N. Atopic dermatitis: identification and management of complicating factors. Int J Mol Sci. 2020:21:2671.
Olisova OY, Kochergin NG, Kayumova LN, et al. Skin DNA methylation profile in atopic dermatitis patients: A case-control study. Exp Dermatol. 2020;29:184-189.
Peters EM, Michenko A, Kupfer J, et al. Mental stress in atopic dermatitis-neuronal plasticity and the cholinergic system are affected in atopic dermatitis and in response to acute experimental mental stress in a randomized controlled pilot study. PLoS One. 2014;9:e113552.
Senra MS, Wollenberg A. Psychodermatological aspects of atopic dermatitis. Br J Dermatol. 2014;170(Suppl 1):38-43.
Frantz T, Wright EG, Balogh EA, et al. Topical and oral therapies for childhood atopic dermatitis and plaque psoriasis. Children (Basel). 2019;6:E125.
Paller AS, Fölster-Holst R, Chen SC, et al. No evidence of increased cancer incidence in children using topical tacrolimus for atopic dermatitis. J Am Acad Dermatol. 2020;S0190-9622.
Seger EW, Wechter T, Strowd L, Feldman SR. Relative efficacy of systemic treatments for atopic dermatitis. J Am Acad Dermatol. 2019;80:411-416.e4.
Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers. 2018;4:1.
Cabanillas B, Brehler AC, Novak N. Atopic dermatitis phenotypes and the need for personalized medicine. Curr Opin Allergy Clin Immunol. 2017;17:309-315.
Brunner PM, Guttman-Yassky E, Leung DY. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J Allergy Clin Immunol. 2017;139:S65-S76.
Delgocitinib DS. First approval. Drugs. 2020;80:609-615.
Wollenberg A, Howell MD, Guttman-Yassky E, et al. Treatment of atopic dermatitis with tralokinumab, an anti-IL-13 mAb. J Allergy Clin Immunol. 2019;143:135-141.
Gibbs BF, Patsinakidis N, Raap U. Role of the pruritic cytokine IL-31 in autoimmune skin diseases. Front Immunol. 2019;10:1383.
Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387:1109-1122.
Ewald DA, Noda S, Oliva M, et al. Major differences between human atopic dermatitis and murine models, as determined by using global transcriptomic profiling. J Allergy Clin Immunol. 2017;139:562-571.
Florian P, Flechsenhar KR, Bartnik E, et al. Translational drug discovery and development with the use of tissue-relevant biomarkers: Towards more physiological relevance and better prediction of clinical efficacy. Exp Dermatol. 2020;29:4-14.
Williamson S, Merritt J, De Benedetto A. Atopic dermatitis in the elderly: a review of clinical and pathophysiological hallmarks. Br J Dermatol. 2020;182:47-54.
Eyerich K, Brown SJ, Perez White BE, et al. Human and computational models of atopic dermatitis: a review and perspectives by an expert panel of the International Eczema Council. J Allergy Clin Immunol. 2019;143:36-45.
Grobe W, Bieber T, Novak N. Pathophysiology of atopic dermatitis. J Dtsch Dermatol Ges. 2019;17:433-440.
Kim BE, Leung DYM. Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol Res. 2018;10:207-215.
Riethmüller C. Assessing the skin barrier via corneocyte morphometry. Exp Dermatol. 2018;923-930.
Yoshida K, Yokouchi M, Nagao K, et al. Functional tight junction barrier localizes in the second layer of the stratum granulosum of human epidermis. J Dermatol Sci. 2013;71:89-99.
Suárez-Fariñas M, Tintle SJ, Shemer A, et al. Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities.Allergy. Clin Immunol. 2011;127:954-964.
Margolis DJ, Mitra N, Berna R, et al. Associating filaggrin copy number variation and atopic dermatitis in African-Americans: Challenges and opportunities. J Dermatol Sci. 2020;98:58-60.
Mansouri Y, Guttman-Yassky E. Immune pathways in atopic dermatitis, and definition of biomarkers through broad and targeted therapeutics. J Clin Med. 2015;4:858-873.
Pugliarello S, Cozzi A, Gisondi P, Girolomoni G. Phenotypes of atopic dermatitis. J Dtsch Dermatol Ges. 2011;9:12-20.
Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38:441-446.
Elias PM, Steinhoff M. "Outside-to-inside" (and now back to "outside") pathogenic mechanisms in atopic dermatitis. J Invest Dermatol. 2008;128:1067-1070.
Smith L, Gatault S, Casals-Diaz L, et al. House dust mite-treated PAR2 over-expressor mouse: a novel model of atopic dermatitis. Exp Dermatol. 2019;28:1298-1308.
Kim J, Kim BE, Leung DYM. Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc. 2019;40:84-92.
Seltmann J, Roesner LM, von Hesler FW, Wittmann M, Werfel T. IL-33 impacts on the skin barrier by downregulating the expression of filaggrin. J Allergy Clin Immunol. 2015;135:1659-1661.
Lee AY. Molecular mechanism of epidermal barrier dysfunction as primary abnormalities. Int J Mol Sci. 2020;11(21):1194.
Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. 2014;14:289-301.
Baurecht H, Rühlemann MC, Rodríguez E, et al. Epidermal lipid composition, barrier integrity, and eczematous inflammation are associated with skin microbiome configuration. J Allergy Clin Immunol. 2018;141:1668-1676.
Nakashima C, Otsuka A, Kabashima K. Interleukin-31 and interleukin-31 receptor: New therapeutic targets for atopic dermatitis. Exp Dermatol. 2018;27:327-331.
Mittermann I, Wikberg G, Johansson C, et al. IgE sensitization profiles differ between adult patients with severe and moderate atopic dermatitis. PLoS One. 2016;11:e0156077.
Gilles S, Akdis C, Lauener R, et al. The role of environmental factors in allergy: a critical reappraisal. Exp Dermatol. 2018;27:1193-1200.
Konrad RJ, Higgs RE, Rodgers GH, et al. Assessment and clinical relevance of serum IL-19 levels in psoriasis and atopic dermatitis using a sensitive and specific novel immunoassay. Sci Rep. 2019;9:5211.
Ungar B, Correa da Rosa J, Shemer A, et al. Patch testing of food allergens promotes Th17 and Th2 responses with increased IL-33: a pilot study. Exp Dermatol. 2017;26:272-275.
Roesner LM, Heratizadeh A, Begemann G, et al. Der p1 and Der p2-specific T cells display a Th2, Th17, and Th2/Th17 phenotype in atopic dermatitis. J Invest Dermatol. 2015;135:2324-2327.
Akdis CA, Arkwright PD, Brüggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75:1582-1605.
Werfel T, Morita A, Grewe M, et al. Allergen specificity of skin-infiltrating T cells is not restricted to a type-2 cytokine pattern in chronic skin lesions of atopic dermatitis. J Invest Dermatol. 1996;107:871-876.
Grewe M, Walther S, Gyufko K, et al. Analysis of the cytokine pattern expressed in situ in inhalant allergen patch test reactions of atopic dermatitis patients. J Invest Dermatol. 1995;105:407-410.
Paller AS, Kong HH, Seed P, et al. The microbiome in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143:26-35.
Thorsteinsdottir S, Stokholm J, Thyssen JP, et al. Genetic, clinical, and environmental factors associated with persistent atopic dermatitis in childhood. JAMA Dermatol. 2019;155:50-57.
Meng J, Moriyama M, Feld M, et al. New mechanism underlying IL-31-induced atopic dermatitis. J Allergy Clin Immunol. 2018;141:1677-1689.e8.
Pavlovic S, Daniltchenko M, Tobin DJ, et al. Further exploring the brain-skin connection: stress worsens dermatitis via substance P-dependent neurogenic inflammation in mice. J Invest Dermatol. 2008;128:434-446.
Yosipovitch G, Berger T, Fassett MS. Neuroimmune interactions in chronic itch of atopic dermatitis. J Eur Acad Dermatol Venereol. 2020;34:239-250.
Tan Y, Ng WJ, Lee SZX, et al. 3-Dimensional optical clearing and imaging of pruritic atopic dermatitis and psoriasis skin reveals downregulation of epidermal innervation. J Invest Dermatol. 2019;139:1201-1204.
Schallreuter KU, Wei Y, Pittelkow MR, et al. Structural and functional alterations in the beta2-adrenoceptor are caused by a point mutation in patients with atopic eczema. Exp Dermatol. 2007;16:807-813.
Safko MJ, Chan SC, Cooper KD, Hanifin JM. Heterologous desensitization of leukocytes: a possible mechanism of beta adrenergic blockade in atopic dermatitis. J Allergy Clin Immunol. 1981;68:218-225.
Pincelli C, Steinhoff M. Recapitulating atopic dermatitis in three dimensions: cross talk between keratinocytes and nerve fibers. J Invest Dermatol. 2013;133:1465-1467.
Lin TK, Zhong L, Santiago JL. Association between stress and the HPA Axis in the atopic dermatitis. Int J Mol Sci. 2017;18:2131.
Yeom M, Ahn S, Oh JY, et al. Atopic dermatitis induces anxiety- and depressive-like behaviors with concomitant neuronal adaptations in brain reward circuits in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2020;98:109818.
Peters EM, Arck PC, Paus R. Hair growth inhibition by psychoemotional stress: a mouse model for neural mechanisms in hair growth control. Exp Dermatol. 2006;15:1-13.
Theoharides TC. Neuroendocrinology of mast cells: Challenges and controversies. Exp Dermatol. 2017;26:751-759.
Botchkarev VA, Peters EM, Botchkareva NV, Maurer M, Paus R. Hair cycle-dependent changes in adrenergic skin innervation, and hair growth modulation by adrenergic drugs. Paus Invest Dermatol. 1999;113:878-887.
Czarnowicki T, Malajian D, Shemer A, et al. Skin-homing and systemic T-cell subsets show higher activation in atopic dermatitis versus psoriasis. Allergy Clin Immunol. 2015;136:208-211.
Guttman-Yassky E, Bissonnette R, Ungar B, et al. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143:155-172.
Bissonnette R, Pavel AB, Diaz A, et al. Crisaborole and atopic dermatitis skin biomarkers: an intrapatient randomized trial. J Allergy Clin Immunol. 2019;144:1274-1289.
Gittler JK, Shemer A, Suárez-Fariñas M, et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012;130:1344-1354.
Thijs JL, Nierkens S, Herath A, et al. A panel of biomarkers for disease severity in atopic dermatitis. Clin Exp Allergy. 2015;45:698-701.
Bergmann S, von Buenau B, Vidal-Y-Sy S, et al. Claudin-1 decrease impacts epidermal barrier function in atopic dermatitis lesions dose-dependently. Sci Rep. 2020;10:2024.
Buhl T, Ikoma A, Kempkes C, et al. Protease-activated receptor-2 regulates neuro-epidermal communication in atopic dermatitis. Frontiers Imuunology. 2020;12(11):1740.
Nakatsuji T, Gallo RL. Antimicrobial peptides: old molecules with new ideas.Invest. Dermatol. 2012;132:887-895.
Nakajima S, Kabata H, Kabashima K, Asano K. Anti-TSLP antibodies: targeting a master regulator of type 2 immune responses. Allergol Int. 2020;69:197-203.
Ariëns LFM, van der Schaft J, Bakker DS, et al. Dupilumab is very effective in a large cohort of difficult-to-treat adult atopic dermatitis patients: first clinical and biomarker results from the BioDay registry. Allergy. 2020;75:116-126.
Nomura T, Wu J, Kabashima K, Guttman-Yassky E. Endophenotypic variations of atopic dermatitis by age, race, and ethnicity. J Allergy Clin Immunol Pract. 2020;8:1840-1852.
Fishbein AB, Silverberg JI, Wilson EJ, Ong PY. Update on atopic dermatitis: diagnosis, severity assessment, and treatment selection. J Allergy Clin Immunol Pract. 2020;8:91-101.
Reich K, Hartjen A, Reich J, et al. Immunoglobulin E-selective immunoadsorption reduces peripheral and skin-bound immunoglobulin E and modulates cutaneous IL-13 expression in severe atopic dermatitis. J Invest Dermatol. 2019;139:720-723.
Steinhoff M, Schmelz M, Szabó IL, Oaklander AL. Clinical presentation, management, and pathophysiology of neuropathic itch. Lancet Neurol. 2018;17:709-720.
Kawakami Y, Ando T, Lee JR, et al. Defective natural killer cell activity in a mouse model of eczema herpeticum. J Allergy Clin Immunol. 2017;139:997-1006.e10.
Sugaya M. The role of Th17-related cytokines in atopic dermatitis. Int J Mol Sci. 2020;21:1314.
Davidson WF, Leung DYM, Beck LA, et al. Report from the national institute of allergy and infectious diseases workshop on "atopic dermatitis and the atopic march: mechanisms and interventions". J Allergy Clin Immunol. 2019;143:894-913.
Kaufman BP, Guttman-Yassky E, Alexis AF. Atopic dermatitis in diverse racial and ethnic groups-Variations in epidemiology, genetics, clinical presentation and treatment. Exp Dermatol. 2018;27:340-357.
Czarnowicki T, He H, Krueger JG, Guttman-Yassky E. Atopic dermatitis endotypes and implications for targeted therapeutics. J Allergy Clin Immunol. 2019;143:1-11.
Czarnowicki T, He H, Canter T, et al. Evolution of pathologic T-cell subsets in patients with atopic dermatitis from infancy to adulthood. J Allergy Clin Immunol. 2020;145:215-228.
Martel BC, Lovato P, Bäumer W, Olivry T. Translational animal models of atopic dermatitis for preclinical studies. Yale J Biol Med. 2017;90:389-402.
Kake T, Imai M, Takahashi N. Effects of β-carotene on oxazolone-induced atopic dermatitis in hairless mice. Exp Dermatol. 2019;28:1044-1050.
Takamori A, Nambu A, Sato K, et al. IL-31 is crucial for induction of pruritus, but not inflammation, in contact hypersensitivity. Sci Rep. 2018;8:6639.
Peiser M. Role of Th17 cells in skin inflammation of allergic contact dermatitis. Clin Dev Immunol. 2013;2013:261037.
Kitagaki H, Ono N, Hayakawa K, Kitazawa T, Watanabe K, Shiohara T. Repeated elicitation of contact hypersensitivity induces a shift in cutaneous cytokine milieu from a T helper cell type 1 to a T helper cell type 2 profile. Immunology. 1997;159:2484-2491.
McFadden JP, White JM, Basketter DA, Kimber I. Does hapten exposure predispose to atopic disease? The hapten-atopy hypothesis. Trends Immunol. 2009;30:67-74.
Spergel JM, Mizoguchi E, Brewer JP, Martin TR, Bhan AK, Geha RS. Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. J Clin Invest. 1998;101:1614-1622.
Shershakova N, Bashkatova E, Babakhin A, et al. Allergen-specific immunotherapy with monomeric allergoid in a mouse model of atopic dermatitis. PLoS One. 2015;10:e0135070.
Jin H, Oyoshi MK, Le Y, et al. IL-21R is essential for epicutaneous sensitization and allergic skin inflammation in humans and mice. J Clin Invest. 2009;119:47-60.
Kim WH, An HJ, Kim JY., et al. Beneficial effects of melittin on ovalbumin-induced atopic dermatitis in mouse. Sci Rep. 2017;7:17679.
Katagiri K, Arakawa S, Hatano Y, Fujiwara S. Tolerogenic antigen-presenting cells successfully inhibit atopic dermatitis-like skin lesion induced by repeated epicutaneous exposure to ovalbumin. Arch Dermatol Res. 2008;300:583-593.
Schülke S, Albrecht M. Mouse Models for food allergies: where do we stand? Cells. 2019;6:546.
van der Kleij HPM, Warmenhoven HJM, van Ree R, et al. Chemically modified peanut extract shows increased safety while maintaining immunogenicity. Allergy. 2019;74:986-995.
Oyoshi MK, Oettgen HC, Chatila TA, Geha RS, Bryce PJ. Food allergy: Insights into etiology, prevention, and treatment provided by murine models. J Allergy Clin Immunol. 2014;133:309-317.
Stremnitzer C, Manzano-Szalai K, Starkl P, et al. Epicutaneously applied Der p 2 induces a strong TH 2-biased antibody response in C57BL/6 mice, independent of functional TLR4. Allergy. 2014;69:741-751.
Brown SJ, Asai Y, Cordell HJ, et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol. 2011;127:661-667.
Kanagaratham C, Sallis BF, Fiebiger E. Experimental models for studying food allergy. Cell Mol Gastroenterol Hepatol. 2018;7:356-369.
Wang Q, Du J, Zhu J, Yang X, Zhou B. Thymic stromal lymphopoietin signaling in CD4(+) T cells is required for TH2 memory. J Allergy Clin Immunol. 2015;135:781-791.e3.
Kim BS, Siracusa MC, Saenz SA, et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med. 2013;30:170ra16.
Chen JL, Niu XL, Gao YL, et al. IL-18 knockout alleviates atopic dermatitis-like skin lesions induced by MC903 in a mouse model. Int J Mol Med. 2020;46:880-888.
Coll RC, Robertson AA, Chae JJ, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21:248-255.
Siracusa MC, Saenz SA, Hill DA, et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature. 2011;14(477):229-233.
Naidoo K, Jagot F, van den Elsen L, et al. Eosinophils determine dermal thickening and water loss in an MC903 model of atopic dermatitis. J Invest Dermatol. 2018;138:2606-2616.
Kawasaki A, Ito N, Murai H, Yasutomi M, Naiki H, Ohshima Y. Skin inflammation exacerbates food allergy symptoms in epicutaneously sensitized mice. Allergy. 2018;73:1313-1321.
Moosbrugger-Martinz V, Schmuth M, Dubrac S. A mouse model for atopic dermatitis using topical application of vitamin D3 or of Its analog MC903. Methods Mol Biol. 2017;1559:91-106.
Sato-Deguchi E, Imafuku S, Chou B, Ishii K, Hiromatsu K, Nakayama J. Topical vitamin D₃ analogues induce thymic stromal lymphopoietin and cathelicidin in psoriatic skin lesions. Br J Dermatol. 2012;167:77-84.
Shimura S, Takai T, Iida H, et al. Epicutaneous allergic sensitization by cooperation between allergen protease activity and mechanical skin barrier damage in mice. J Invest Dermatol. 2016;136:1408-1417.
Galand C, Leyva-Castillo JM, Yoon J, et al. IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. J. Allergy Clin. Immunol. 2016;137:AB150.
Abboud G, Staumont-Sallé D, Kanda A, et al. Fc(epsilon)RI and FcgammaRIII/CD16 differentially regulate atopic dermatitis in mice. J Immunol. 2009;182:6517-6526.
Schwartz C, Moran T, Saunders SP, et al. Spontaneous atopic dermatitis in mice with a defective skin barrier is independent of ILC2 and mediated by IL-1β. Allergy. 2019;74:1920-1933.
Oshio T, Sasaki Y, Funakoshi-Tago M, et al. Dermatophagoides farinae extract induces severe atopic dermatitis in NC/Nga mice, which is effectively suppressed by the administration of tacrolimus ointment. Int Immunopharmacol. 2009;9:403-411.
Ehling S, Roßbach K, Dunston SM, Stark H, Bäumer W. Allergic inflammation is augmented via histamine H4 receptor activation: The role of natural killer cells in vitro and in vivo. J Dermatol Sci. 2016;83:106-115.
Yoshihisa Y, Makino T, Matsunaga K, et al. Macrophage migration inhibitory factor is essential for eosinophil recruitment in allergen-induced skin inflammation. J Invest Dermatol. 2011;131:925-931.
Nakajima S, Igyártó BZ, Honda T, et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J Allergy Clin Immunol. 2012;129:1048-1055.
Kawakami Y, Yumoto K, Kawakami T. An improved mouse model of atopic dermatitis and suppression of skin lesions by an inhibitor of Tec family kinases. Allergol Int. 2007;56:403-409.
Ando T, Matsumoto K, Namiranian S, et al. Mast cells are required for full expression of allergen/SEB-induced skin inflammation. Invest Dermatol. 2013;133:2695-2705.
Jin H, He R, Oyoshi M, Geha RS. Animal models of atopic dermatitis. J Invest Dermatol. 2009;129:31-40.
Cross SE, Roberts MS. The effect of occlusion on epidermal penetration of parabens from a commercial allergy test ointment, acetone and ethanol vehicles. J Invest Dermatol. 2000;115:914-918.
Thyssen JP, Jakasa I, Riethmüller C, et al. Filaggrin expression and processing deficiencies impair corneocyte surface texture and stiffness in mice. J Invest Dermatol. 2020;140:615-623.
Riise R, Odqvist L, Mattsson J, et al. Bleomycin hydrolase regulates the release of chemokines important for inflammation and wound healing by keratinocytes. Sci Rep. 2019;9:20407.
Yasuda T, Fukada T, Nishida K, et al. Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis. J Clin Invest. 2016;126:2064-2076.
Vandeghinste N, Klattig J, Jagerschmidt C, et al. Neutralization of IL-17C reduces skin inflammation in mouse models of psoriasis and atopic dermatitis. J Invest Dermatol. 2018;138:1555-1563.
Sasaki T, Shiohama A, Kubo A, et al. A homozygous nonsense mutation in the gene for Tmem79, a component for the lamellar granule secretory system, produces spontaneous eczema in an experimental model of atopic dermatitis. J Allergy Clin Immunol. 2013;132:1111-1120.e4.
Saunders SP, Goh CS, Brown SJ, et al. Tmem79/Matt is the matted mouse gene and is a predisposing gene for atopic dermatitis in human subjects. J Allergy Clin Immunol. 2013;132:1121-1129.
Moniaga CS, Jeong SK, Egawa G, et al. Protease activity enhances production of thymic stromal lymphopoietin and basophil accumulation in flaky tail mice. Am J Pathol. 2013;182:841-851.
Kempkes C, Buddenkotte J, Cevikbas F, Buhl T, Steinhoff M. Role of PAR-2 in Neuroimmune Communication and Itch. In Carstens E, Akiyama T, eds. Itch: Mechanisms and Treatment. Boca Raton, FL: CRC Press/Taylor & Francis; 2014. Chapter 11.
Yamanaka KI, Mizutani H. The role of cytokines/chemokines in the pathogenesis of atopic dermatitis. Curr Probl Dermatol. 2011;41:80-92.
Gbyli R, Song Y, Halene S. Humanized mice as preclinical models for myeloid malignancies. Biochem Pharmacol. 2020;174:113794.
Fischer MR, Schermann AI, Twelkmeyer T, et al. Humanized mice in cutaneous leishmaniasis-Suitability analysis of human PBMC transfer into immunodeficient mice. Exp Dermatol. 2019;28:1087-1090.
Keren A, Shemer A, Ginzburg A, et al. Innate lymphoid cells 3 induce psoriasis in xenotransplanted healthy human skin. J Allergy Clin Immunol. 2018;142:305-308.
Khodoun MV, Morris SC, Angerman E, et al. Rapid desensitization of humanized mice with anti-human FcεRIα monoclonal antibodies. J Allergy Clin Immunol. 2020;145:907-992.
Carretero M, Guerrero-Aspizua S, Illera N, et al. Differential features between chronic skin inflammatory diseases revealed in skin-humanized psoriasis and atopic dermatitis mouse models. J Invest Dermatol. 2016;136:136-145.
Laufer Britva R, Keren A, Paus R, Gilhar A. Apremilast and tofacitinib exert differential effects in the humanized mouse model of alopecia areata. Br J Dermatol. 2020;182:227-229.
Sebastian A, Volk SW, Halai P, Colthurst J, Paus R, Bayat A. Enhanced neurogenic biomarker expression and reinnervation in human acute skin wounds treated by electrical stimulation. J Invest Dermatol. 2017;137:737-747.
Siiskonen H, Harvima I. Mast Cells and sensory nerves contribute to neurogenic inflammation and pruritus in chronic skin inflammation. FronT-cell Neurosci. 2019;13:422.
Szentivanyi A, The beta adrenergic theory of the atopic abnormality in bronchial asthma. J Allergy. 1968;42:203-232.
Röcken M, Schallreuter K, Renz H, Szentivanyi A. What exactly is "atopy"? Exp Dermatol. 1998;7:97-104.
Oetjen LK, Kim BS. Interactions of the immune and sensory nervous systems in atopy. FEBS J. 2018;285:3138-3151.
Arck PC, Handjiski B, Kuhlmei A, et al. Mast cell deficient and neurokinin-1 receptor knockout mice are protected from stress-induced hair growth inhibition. Mol Med (Berl). 2005;83:386-396.
Theoharides TC. The impact of psychological stress on mast cells. Ann Allergy Asthma Immunol. 2020;125:388-392.
Theoharides TC. Neuroendocrinology of mast cells: challenges and controversies. Exp Dermatol. 2017;26:751-759.
Neunkirchner A, Kratzer B, Köhler C, et al. Genetic restriction of antigen-presentation dictates allergic sensitization and disease in humanized mice. EBioMedicine. 2018;31:66-78.
Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL, Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12:786-798.
Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. In: Tan S-L, ed. Translational Immunology: Mechanisms and Pharmacological Approaches. Amsterdam: Elsevier; 2016:285-326.
Anselmi G, Helft J, Guermonprez P. Development and function of human dendritic cells in humanized mice models. Mol Immunol. 2020;125:151-161.
Paus R. Exploring the "brain-skin connection": Leads and lessons from the hair follicle. Curr Res Transl Med. 2016;64:207-214.
Metz M, Botchkarev VA, Botchkareva NV, et al. Neurotrophin-3 regulates mast cell functions in neonatal mouse skin. Exp Dermatol. 2004;13:273-281.
Bieber T, D'Erme AM, Akdis CA, et al. Clinical phenotypes and endophenotypes of atopic dermatitis: where are we, and where should we go? Allergy Clin Immunol. 2017;139:S58-S64.
Sterry W, Paus R, Burgdorf W. Dermatology, Thieme Clinical Companions. New York/Stuttgart: Thieme; 2006, Dermatitis :192.
Kim H, Kim JR, Kang H, et al. 7,8,4'-Trihydroxyisoflavone attenuates DNCB-induced atopic dermatitis-like symptoms in NC/Nga mice. PLoS One. 2014;9:e104938.
Na K, Lkhagva-Yondon E, Kim M, et al. Oral treatment with Aloe polysaccharide ameliorates ovalbumin-induced atopic dermatitis by restoring tight junctions in skin. Scand J Immunol. 2020;91:e12856.
Walsh CM, Hill RZ, Schwendinger-Schreck J, et al. Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis. Elife. 2019;8:e48448.
Bromley SK, Larson RP, Ziegler SF, Luster AD. IL-23 induces atopic dermatitis-like inflammation instead of psoriasis-like inflammation in CCR2-deficient mice. PLoS One. 2013;8:e58196.
Moniaga CS, Egawa G, Kawasaki H, et al. Flaky tail mouse denotes human atopic dermatitis in the steady state and by topical application with Dermatophagoides pteronyssinus extract. Am J Pathol. 2010;176:2385-2393.
Kim JY, Jeong MS, Park MK, Lee MK, Seo SJ. Time-dependent progression from the acute to chronic phases in atopic dermatitis induced by epicutaneous allergen stimulation in NC/Nga mice. Exp Dermatol. 2014;23:53-57.
Yamada K, Matsushita K, Wang J, Kanekura T. Topical glucose induces claudin-1 and filaggrin expression in a mouse model of atopic dermatitis and in keratinocyte culture, exerting anti-inflammatory effects by repairing skin barrier function. Acta Derm Venereol. 2018;98:19-25.
Kim YJ, Choi MJ, Bak DH, et al. Topical administration of EGF suppresses immune response and protects skin barrier in DNCB-induced atopic dermatitis in NC/Nga mice. Sci Rep. 2018;8:11895.
Fang YP, Yang SH, Lee CH, Aljuffali IA, Kao HC, Fang JY. What is the discrepancy between drug permeation into/across intact and diseased skins? Atopic dermatitis as a model. Int J Pharm. 2016;497:277-286.
Kim YE, Cho N, Cheon S, Kim KK. Bortezomib, a proteasome inhibitor, alleviates atopic dermatitis by increasing claudin 1 protein expression. Biochem Biophys Res Commun. 2017;493:744-750.
Yamada Y, Ueda Y, Nakamura A, et al. Immediate-type allergic and protease-mediated reactions are involved in scratching behaviour induced by topical application of Dermatophagoides farinae extract in NC/Nga mice. Exp Dermatol. 2018;27:418-426.
Man MQ, Hatano Y, Lee SH, et al. Characterization of a hapten-induced, murine model with multiple features of atopic dermatitis: structural, immunologic, and biochemical changes following single versus multiple oxazolone challenges. J Invest Dermatol. 2008;128:79-86.
Zhu Y, Pan WH, Wang XR, et al. Tryptase and protease-activated receptor-2 stimulate scratching behavior in a murine model of ovalbumin-induced atopic-like dermatitis. Int Immunopharmacol. Int Immunopharmacol. 2015;28:507-512.
Liu XJ, Mu ZL, Zhao Y, Zhang JZ. Topical tetracycline improves MC903-induced atopic dermatitis in mice through inhibition of inflammatory cytokines and thymic stromal lymphopoietin expression. Chin Med J (Engl). 2016;129:1483-1490.
Barr TP, Garzia C, Guha S, et al. PAR2 pepducin-based suppression of inflammation and itch in atopic dermatitis models. J Invest Dermatol. 2019;139:412-421.
Cevikbas F, Wang X, Akiyama T, et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: Involvement of TRPV1 and TRPA1. J Allergy Clin Immunol. 2014;133:448-460.
Yoon NY, My J, Kim DH, Lee HJ, Choi EH. Topical glucocorticoid or pimecrolimus treatment suppresses thymic stromal lymphopoietin-related allergic inflammatory mechanism in an oxazolone-induced atopic dermatitis murine model. Arch Dermatol Res. 2015;307:569-581.
Bäumer W, Seegers U, Braun M, Tschernig T, Kietzmann M. TARC and RANTES, but not CTACK, are induced in two models of allergic contact dermatitis. Effects of cilomilast and diflorasone diacetate on T-cell-attracting chemokines. Br J Dermatol. 2004;151:823-830.
Yoo J, Manicone AM, McGuire JK, Wang Y, Parks WC. Systemic sensitization with the protein allergen ovalbumin augments local sensitization in atopic dermatitis. J Inflamm Res. 2014;7:29-38.
Hennino A, Vocanson M, Toussaint Y, et al. Skin-infiltrating CD8+ T cells initiate atopic dermatitis lesions. J Immunol. 2007;178:5571-5577.
Chen L, Martinez O, Venkataramani P, Lin SX, Prabhakar BS, Chan LS. Correlation of disease evolution with progressive inflammatory cell activation and migration in the IL-4 transgenic mouse model of atopic dermatitis. Clin Exp Immunol. 2005;139:189-201.
Bak DH, Lee E, Lee BC, et al. Therapeutic potential of topically administered γ-AlOOH on 2,4-dinitrochlorobenzene-induced atopic dermatitis-like lesions in Balb/c mice. Exp Dermatol. 2019;28:169-176.
Sharma S, Sethi GS, Naura AS. Curcumin ameliorates ovalbumin-induced atopic dermatitis and blocks the progression of atopic march in mice. Naura. Inflammation. 2020;43:358-369.
Mitsuishi T, Kabashima K, Tanizaki H, et al. Specific substance of Maruyama (SSM) suppresses immune responses in atopic dermatitis-like skin lesions in DS-Nh mice by modulating dendritic cell functions. J Dermatol Sci. 2011;63:184-190.
Mishra SK, Wheeler JJ, Pitake S, et al. Periostin activation of integrin receptors on sensory neurons induces allergic itch. Cell Rep. 2020;31:107472.
Nakagami Y, Kawashima K, Yonekubo K, et al. Novel CC chemokine receptor 4 antagonist RS-1154 inhibits ovalbumin-induced ear swelling in mice. Eur J Pharmacol. 2009;624:38-44.
Savinko T, Lauerma A, Lehtimäki S, et al. Topical superantigen exposure induces epidermal accumulation of CD8+ T cells, a mixed Th1/Th2-type dermatitis and vigorous production of IgE antibodies in the murine model of atopic dermatitis. J Immunol. 2005;175:8320-8326.
Wang G, Savinko T, Wolff H, et al. Repeated epicutaneous exposures to ovalbumin progressively induce atopic dermatitis-like skin lesions in mice. Clin Exp Allergy. 2007;37:151-161.
Chan LS, Robinson N, Xu L. Expression of interleukin-4 in the epidermis of transgenic mice results in a pruritic inflammatory skin disease: an experimental animal model to study atopic dermatitis. J Invest Dermatol. 2001;117:977-983.
Saunders SP, Moran T, Floudas A, et al. Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. J Allergy Clin Immunol. 2016;137:482-491.
Robb CT, McSorley HJ, Lee J, et al. Prostaglandin E2 stimulates adaptive IL-22 production and promotes allergic contact dermatitis. J Allergy Clin Immunol. 2018;141:152-162.
Malik K, Ungar B, Garcet S, et al. Dust mite induces multiple polar T cell axes in human skin. Clin Exp Allergy. 2017;47:1648-1660.
Majewska-Szczepanik M, Askenase PW, Lobo FM, Marcińska K, Wen L, Szczepanik M. Epicutaneous immunization with ovalbumin and CpG induces TH1/TH17 cytokines, which regulate IgE and IgG2a production. J Allergy Clin Immunol. 2016;138:262-273.
Jiang X, He H, Xie Z, et al. Dehydroxymethylepoxyquinomicin suppresses atopic dermatitis-like lesions in a stratum corneum-removed murine model through NF-κB inhibition. Immunopharmacol Immunotoxicol. 2019;41:32-39.
Takaoka A, Arai I, Sugimoto M, Yamaguchi A, Tanaka M, Nakaike S. Expression of IL-31 gene transcripts in NC/Nga mice with atopic dermatitis. Eur J Pharmacol. 2005;516:180-181.
Bai XY, Liu P, Chai YW, et al. Artesunate attenuates 2, 4-dinitrochlorobenzene-induced atopic dermatitis by down-regulating Th17 cell responses in BALB/c mice. Eur J Pharmacol. 2020;874:173020.
Glocova I, Brück J, Geisel J, et al. Induction of skin-pathogenic Th22 cells by epicutaneous allergen exposure. J Dermatol Sci. 2017;87:268-277.
Park BK, Park YC, Jung IC, et al. Gamisasangja-tang suppresses pruritus and atopic skin inflammation in the NC/Nga murine model of atopic dermatitis. J Ethnopharmacol. 2015;165:54-60.
Pietka W, Sundnes O, Hammarström C, Zucknick M, Khnykin D, Haraldsen G. Lack of interleukin-33 and its receptor does not prevent calcipotriol-induced atopic dermatitis-like inflammation in mice. Sci Rep. 2020;10:6451.
Savinko T, Matikainen S, Saarialho-Kere U, et al. IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J Invest Dermatol. 2012;132:1392-1400.
Murakami T, Yamanaka K, Tokime K, et al. Topical suplatast tosilate (IPD) ameliorates Th2 cytokine-mediated dermatitis in caspase-1 transgenic mice by downregulating interleukin-4 and interleukin-5. Br J Dermatol. 2006;155:27-32.
Tamura T, Amano T, Ohmori K, Manabe H. The effects of olopatadine hydrochloride on the number of scratching induced by repeated application of oxazolone in mice. Eur J Pharmacol. 2005;7(524):149-154.
Takano N, Sakurai T, Kurachi M. Effects of anti-nerve growth factor antibody on symptoms in the NC/Nga mouse, an atopic dermatitis model. J Pharmacol Sci. 2005;99:277-286.
Ohmura T, Tsunenari I, Hayashi T, et al. Role of substance P in an NC/Nga mouse model of atopic dermatitis-like disease. Int Arch Allergy Immunol. 2004;133:389-397.
Peters EM, Liezmann C, Spatz K, et al. Nerve growth factor partially recovers inflamed skin from stress-induced worsening in allergic inflammation. J Invest Dermatol. 2011;131:735-743.
Yatsuzuka R, Inoue T, Jiang S, Nakano Y, Kamei C. Development of new atopic dermatitis models characterized by not only itching but also inflammatory skin in mice. Eur J Pharmacol. Eur J Pharmacol. 2007;565:225-231.
Lehto M, Savinko T, Wolff H, et al. A murine model of epicutaneous protein sensitization is useful to study efficacies of topical drugs in atopic dermatitis. Int Immunopharmacol. 2010;10:377-384.
Lee HS, Kim SK, Han JB, et al. Inhibitory effects of Rumex japonicus Houtt. on the development of atopic dermatitis-like skin lesions in NC/Nga mice. An, J.Y. Um, H.M. Kim, B.I. Min. Br J Dermatol. 2006;155:33-38.

Auteurs

Amos Gilhar (A)

Skin Research Laboratory, Rappaport Faculty of Medicine, Technion -Israel Institute of Technology, Haifa, Israel.
Rambam Health Care Campus, Haifa, Israel.

Kristian Reich (K)

Centre for Translational Research in Inflammatory Skin Diseases, Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Skinflammation Center, Hamburg, Germany.

Aviad Keren (A)

Skin Research Laboratory, Rappaport Faculty of Medicine, Technion -Israel Institute of Technology, Haifa, Israel.

Kenji Kabashima (K)

Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore.

Martin Steinhoff (M)

Department of Dermatology and Venereology, Hamad Medical Corporation, Qatar University, Doha, Qatar.
School of Medicine, Weill Cornell University-Qatar and Qatar University, Doha, Qatar.

Ralf Paus (R)

Dr. Phillip Frost, Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
Dermatology Research Centre, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester, UK.
Monasterium Laboratory, Münster, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH