Maximum axonal following frequency separates classes of cutaneous unmyelinated nociceptors in the pig.
C-fibre
axon
discharge frequency
excitability
nerve growth factor
pain
sensitization
Journal
The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262
Informations de publication
Date de publication:
03 2021
03 2021
Historique:
received:
03
06
2020
accepted:
17
12
2020
pubmed:
29
12
2020
medline:
21
4
2021
entrez:
28
12
2020
Statut:
ppublish
Résumé
C-nociceptors are generally assumed to have a low maximum discharge frequency of 10-30 Hz. However, only mechano-insensitive 'silent' C-nociceptors cannot follow electrical stimulation at 5 Hz (75 pulses) whereas polymodal C-nociceptors in the pig follow stimulation at up to 100 Hz without conduction failure. Sensitization by nerve growth factor increases the maximum following frequency of 'silent' nociceptors in pig skin and might thereby contribute in particular to intense pain sensations in chronic inflammation. A distinct class of C-nociceptors with mechanical thresholds >150 mN resembles 'silent' nociceptors at low stimulation frequencies in pigs and humans, but is capable of 100 Hz discharge and thus is suited to encode painfulness of noxious mechanical stimuli. Using extracellular single-fibre recordings from the saphenous nerve in pig in vivo, we investigated peak following frequencies (5-100 Hz) in different classes of C-nociceptors and their modulation by nerve growth factor. Classes were defined by sensory (mechano-sensitivity) and axonal characteristics (activity dependent slowing of conduction, ADS). Mechano-insensitive C-nociceptors (CMi) showed the highest ADS (34% ± 8%), followed only 66% ± 27% of 75 pulses at 5 Hz and increasingly blocked conduction at higher frequencies. Three weeks following intradermal injections of nerve growth factor, peak following frequency increased specifically in the sensitized mechano-insensitive nociceptors (20% ± 16% to 38% ± 23% response rate after 72 pulses at 100 Hz). In contrast, untreated polymodal nociceptors with moderate ADS (15.2% ± 10.2%) followed stimulation frequencies of 100 Hz without conduction failure (98.5% ± 6%). A distinct class of C-nociceptors was exclusively sensitive to strong forces above 150 mN. This class had a high ADS (27.2% ± 7.6%), but displayed almost no propagation failure even at 100 Hz stimulation (84.7% ± 17%). Also, among human mechanosensitive nociceptors (n = 153) those with thresholds above 150 mN (n = 5) showed ADS typical of silent nociceptors. C-fibres with particularly high mechanical thresholds and high following frequency form a distinct nociceptor class ideally suited to encode noxious mechanical stimulation under normal conditions when regular silent nociceptors are inactive. Sensitization by nerve growth factor increases maximum discharge frequency of silent nociceptors, thereby increasing the frequency range beyond their physiological limit, which possibly contributes to excruciating pain under inflammatory conditions.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1595-1610Informations de copyright
© 2020 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Références
Barkai O, Butterman R, Katz B, Lev S & Binshtok AM (2020). The input-output relation of primary nociceptive neurons is determined by the morphology of the peripheral nociceptive terminals. J Neurosci 40, 9346-9363.
Belmonte C & Viana F (2008). Molecular and cellular limits to somatosensory specificity. Mol Pain 4, 1744-8069-4-14.
Bennett DL, Clark AJ, Huang J, Waxman SG & Dib-Hajj SD (2019). The role of voltage-gated sodium channels in pain signaling. Physiol Rev 99, 1079-1151.
Bostock H, Campero M, Serra J & Ochoa J (2003). Velocity recovery cycles of C fibres innervating human skin. J Physiol 553, 649-663.
Campbell JN & Meyer RA (1983). Sensitization of unmyelinated nociceptive afferents in monkey varies with skin type. J Neurophysiol 49, 98-110.
Campero M, Serra J, Bostock H & Ochoa JL (2004). Partial reversal of conduction slowing during repetitive stimulation of single sympathetic efferents in human skin. Acta Physiol Scand 182, 305-311.
Campero M, Serra J & Ochoa JL (1996). C-polymodal nociceptors activated by noxious low temperature in human skin. J Physiol 497, 565-572.
Cho K, Jang JH, Kim SP, Lee SH, Chung SC, Kim IY, Jang DP & Jung SJ (2016). Analysis of nociceptive information encoded in the temporal discharge patterns of cutaneous C-fibers. Front Comput Neurosci 10, 118.
De Col R, Messlinger K & Carr RW (2008). Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges. J Physiol 586, 1089-1103.
Denk F, Bennett DL & McMahon SB (2017). Nerve growth factor and pain mechanisms. Annu Rev Neurosci 40, 307-325.
Dickie AC, McCormick B, Lukito V, Wilson KL & Torsney C (2017). Inflammatory pain reduces C fiber activity-dependent slowing in a sex-dependent manner, amplifying nociceptive input to the spinal cord. J Neurosci 37, 6488-6502.
Djouhri L, Dawbarn D, Robertson A, Newton R & Lawson SN (2001). Time course and nerve growth factor dependence of inflammation-induced alterations in electrophysiological membrane properties in nociceptive primary afferent neurons. J Neurosci 21, 8722-8733.
Djouhri L & Lawson SN (2001). Increased conduction velocity of nociceptive primary afferent neurons during unilateral hindlimb inflammation in the anaesthetised guinea-pig. Neuroscience 102, 669-679.
Du X, Hao H, Yang Y, Huang S, Wang C, Gigout S, Ramli R, Li X, Jaworska E, Edwards I, Deuchars J, Yanagawa Y, Qi J, Guan B, Jaffe DB, Zhang H & Gamper N (2017). Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission. J Clin Invest 127, 1741-1756.
Garell PC, McGillis SL & Greenspan JD (1996). Mechanical response properties of nociceptors innervating feline hairy skin. J Neurophysiol 75, 1177-1189.
Gee MD, Lynn B & Cotsell B (1996). Activity-dependent slowing of conduction velocity provides a method for identifying different functional classes of C-fibre in the rat saphenous nerve. Neuroscience 73, 667-675.
George A, Serra J, Navarro X & Bostock H (2007). Velocity recovery cycles of single C fibres innervating rat skin. J Physiol 578, 213-232.
Goldstein RH, Barkai O, Inigo-Portugues A, Katz B, Lev S & Binshtok AM (2019). Location and plasticity of the sodium spike initiation zone in nociceptive terminals in vivo. Neuron 102, 801-812.e5 e805.
Gould HJ, Gould TN, England JD, Paul D, Liu ZP & Levinson SR (2000). A possible role for nerve growth factor in the augmentation of sodium channels in models of chronic pain. Brain Res 854, 19-29.
Gybels J, Handwerker HO & Van HJ (1979). A comparison between the discharges of human nociceptive nerve fibres and the subject's ratings of his sensations. J Physiol 292, 193-206.
Haring M, Zeisel A, Hochgerner H, Rinwa P, Jakobsson JET, Lonnerberg P, La Manno G, Sharma N, Borgius L, Kiehn O, Lagerstrom MC, Linnarsson S & Ernfors P (2018). Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. Nat Neurosci 21, 869-880.
Hirth M, Rukwied R, Gromann A, Turnquist B, Weinkauf B, Francke K, Albrecht P, Rice F, Hagglof B, Ringkamp M, Engelhardt M, Schultz C, Schmelz M & Obreja O (2013). Nerve growth factor induces sensitization of nociceptors without evidence for increased intraepidermal nerve fiber density. Pain 154, 2500-2511.
Julius D (2013). TRP channels and pain. Annu Rev Cell Dev Biol 29, 355-384.
Klein T, Magerl W, Hopf HC, Sandkuhler J & Treede RD (2004). Perceptual correlates of nociceptive long-term potentiation and long-term depression in humans. J Neurosci 24, 964-971.
LaMotte RH & Thalhammer JG (1982). Response properties of high-threshold cutaneous cold receptors in the primate. Brain Res 244, 279-287.
LaMotte RH, Thalhammer JG, Torebjörk HE & Robinson CJ (1982). Peripheral neural mechanisms of cutaneous hyperalgesia following mild injury by heat. J Neurosci 2, 765-781.
Li C, Wang S, Chen Y & Zhang X (2018). Somatosensory neuron typing with high-coverage single-cell RNA sequencing and functional analysis. Neurosci Bull 34, 200-207.
Li CL, Li KC, Wu D, Chen Y, Luo H, Zhao JR, Wang SS, Sun MM, Lu YJ, Zhong YQ, Hu XY, Hou R, Zhou BB, Bao L, Xiao HS & Zhang X (2016). Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Research 26, 967.
Lynn B, Faulstroh K & Pierau FK (1995). The classification and properties of nociceptive afferent units from the skin of the anaesthetized pig. Eur J Neurosci 7, 431-437.
Meyer RA & Campbell JN (1988). A novel electrophysiological technique for locating cutaneous nociceptive and chemospecific receptors. Brain Res 441, 81-86.
Meyer RA, Davis KD, Cohen RH, Treede RD & Campbell JN (1991). Mechanically insensitive afferents (Mias) in cutaneous nerves of monkey. Brain Res 561, 252-261.
Obreja O, Hirth M, Turnquist B, Rukwied R, Ringkamp M & Schmelz M (2012). The differential effects of two sodium channel modulators on the conductive properties of C-fibers in pig skin in vivo. Anesth Analg 115, 560-571.
Obreja O, Ringkamp M, Namer B, Forsch E, Klusch A, Rukwied R, Petersen M & Schmelz M (2010). Patterns of activity-dependent conduction velocity changes differentiate classes of unmyelinated mechano-insensitive afferents including cold nociceptors, in pig and in human. Pain 148, 59-69.
Obreja O, Ringkamp M, Turnquist B, Hirth M, Forsch E, Rukwied R, Petersen M & Schmelz M (2011). Nerve growth factor selectively decreases activity-dependent conduction slowing in mechano-insensitive C-nociceptors. Pain 152, 2138-2146.
Obreja O, Rukwied R, Nagler L, Schmidt M, Schmelz M & Namer B (2018). Nerve growth factor locally sensitizes nociceptors in human skin. Pain 159, 416-426.
Obreja O & Schmelz M (2010). Single-fiber recordings of unmyelinated afferents in pig. Neurosci Lett 470, 175-179.
Orstavik K, Namer B, Schmidt R, Schmelz M, Hilliges M, Weidner C, Carr RW, Handwerker H, Jorum E & Torebjork HE (2006). Abnormal function of C-fibers in patients with diabetic neuropathy. J Neurosci 26, 11287-11294.
Perl ER (1996). Cutaneous polymodal receptors: characteristics and plasticity. Prog Brain Res 113, 21-37.
Petersson ME, Obreja O, Lampert A, Carr RW, Schmelz M & Fransen E (2014). Differential axonal conduction patterns of mechano-sensitive and mechano-insensitive nociceptors-a combined experimental and modelling study. PLoS One 9, e103556.
Raymond SA, Thalhammer JG, Popitz-Bergez F & Strichartz GR (1990). Changes in axonal impulse conduction correlate with sensory modality in primary afferent fibers in the rat. Brain Res 526, 318-321.
Reichling DB, Green PG & Levine JD (2013). The fundamental unit of pain is the cell. Pain 154, S2-9.
Ringkamp M, Johanek LM, Borzan J, Hartke TV, Wu G, Pogatzki-Zahn EM, Campbell JN, Shim B, Schepers RJ & Meyer RA (2010). Conduction properties distinguish unmyelinated sympathetic efferent fibers and unmyelinated primary afferent fibers in the monkey. PLoS One 5, e9076.
Robinson CJ, Torebjörk HE & LaMotte RH (1983). Psychophysical detection and pain ratings of incremental thermal stimuli: a comparison with nociceptor responses in humans. Brain Res 274, 87-106.
Rukwied R, Mayer A, Kluschina O, Obreja O, Schley M & Schmelz M (2010). NGF induces non-inflammatory localized and lasting mechanical and thermal hypersensitivity in human skin. Pain 148, 407-413.
Rukwied R, Weinkauf B, Main M, Obreja O & Schmelz M (2013). Inflammation meets sensitization - an explanation for spontaneous nociceptor activity? Pain 154, 2707-2714.
Schaefer I, Prato V, Arcourt A, Taberner FJ & Lechner SG (2018). Differential modulation of voltage-gated sodium channels by nerve growth factor in three major subsets of TrkA-expressing nociceptors. Mol Pain 14, 174480691881464.
Schmelz M, Schmid R, Handwerker HO & Torebjork HE (2000a). Encoding of burning pain from capsaicin-treated human skin in two categories of unmyelinated nerve fibres. Brain 123 560-571.
Schmelz M, Schmidt R, Handwerker HO & Torebjörk HE (2000b). Encoding of burning pain from capsaicin-treated human skin in two categories of unmyelinated nerve fibres. Brain 123, 560-571.
Schmelz M, Schmidt R, Weidner C, Hilliges M, Torebjork HE & Handwerker HO (2003). Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol 89, 2441-2448.
Schmidt R, Schmelz M, Forster C, Ringkamp M, Torebjörk HE & Handwerker HO (1995). Novel classes of responsive and unresponsive C nociceptors in human skin. J Neurosci 15, 333-341.
Schmidt R, Schmelz M, Torebjork HE & Handwerker HO (2000). Mechano-insensitive nociceptors encode pain evoked by tonic pressure to human skin. Neuroscience 98, 793-800.
Schmidt RF, Schaible HG, Messlinger K, Hanesch U & Pawlak M (1994). Silent and Active Nociceptors: Structure, Functions and Clinical Implications, eds Gebhart GF, Hammond DL & Jensen TS, pp. 213-250.IASP Press, Seattle, USA.
Serra J, Campero M, Ochoa J & Bostock H (1999). Activity-dependent slowing of conduction differentiates functional subtypes of C fibres innervating human skin. J Physiol 515, 799-811.
Serra J, Sola R, Quiles C, Casanova-Molla J, Pascual V, Bostock H & Valls-Sole J (2009). C-nociceptors sensitized to cold in a patient with small-fiber neuropathy and cold allodynia. Pain 147, 46-53.
Simone DA & Kajander KC (1997). Responses of cutaneous A fiber nociceptors to noxious cold. J Neurophysiol 77, 2049-2060.
Slugg RM, Meyer RA & Campbell JN (2000). Response of cutaneous A- and C-fiber nociceptors in the monkey to controlled-force stimuli. J Neurophysiol 83, 2179-2191.
Sun W, Miao B, Wang XC, Duan JH, Wang WT, Kuang F, Xie RG, Xing JL, Xu H, Song XJ, Luo C & Hu SJ (2012). Reduced conduction failure of the main axon of polymodal nociceptive C-fibres contributes to painful diabetic neuropathy in rats. Brain 135, 359-375.
Thalhammer JG, Raymond SA, Popitz Bergez FA & Strichartz GR (1994). Modality-dependent modulation of conduction by impulse activity in functionally characterized single cutaneous afferents in the rat. Somatosens Mot Res 11, 243-257.
Tigerholm J, Petersson ME, Obreja O, Lampert A, Carr R, Schmelz M & Fransen E (2014). Modeling activity-dependent changes of axonal spike conduction in primary afferent C-nociceptors. J Neurophysiol 111, 1721-1735.
Tillman DB, Treede RD, Meyer RA & Campbell JN (1995). Response of C fibre nociceptors in the anaesthetized monkey to heat stimuli: correlation with pain threshold in humans. J Physiol 485, 767-774.
Torebjörk HE (1985). Nociceptor activation and pain. Philos Trans R Soc Lond B Biol Sci 308, 227-234.
Torebjörk HE & Hallin RG (1974). Responses in human A and C fibres to repeated electrical intradermal stimulation. J Neurol Neurosurg Psychiatry 37, 653-664.
Torebjörk HE, LaMotte RH & Robinson CJ (1984a). Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: simultaneous recordings in humans of sensory judgments of pain and evoked responses in nociceptors with C-fibers. J Neurophysiol 51, 325-339.
Torebjörk HE, Schady W & Ochoa JL (1984b). A new method for demonstration of central effects of analgesic agents in man. J Neurol Neurosurg Psychiat 47, 862-869.
Turnquist B, Leverentz M & Swanson E (2004). Neural spike classification using parallel selection of all algorithm parameters. J Neurosci Methods 137, 291-298.
Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, Lou D, Hjerling-Leffler J, Haeggstrom J, Kharchenko O, Kharchenko PV, Linnarsson S & Ernfors P (2015). Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18, 145-153.
Weidner C, Schmelz M, Schmidt R, Hammarberg B, Orstavik K, Hilliges M, Torebjörk HE & Handwerker HO (2002). Neural signal processing: the underestimated contribution of peripheral human C-fibers. J Neurosci 22, 6704-6712.
Weidner C, Schmelz M, Schmidt R, Hansson B, Handwerker HO & Torebjörk HE (1999). Functional attributes discriminating mechano-insensitive and mechano-responsive C nociceptors in human skin. J Neurosci 19, 10184-10190.
Wooten M, Weng HJ, Hartke TV, Borzan J, Klein AH, Turnquist B, Dong X, Meyer RA & Ringkamp M (2014). Three functionally distinct classes of C-fibre nociceptors in primates. Nat Commun 5, 4122.
Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, van der Zwan J, Haring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U & Linnarsson S (2018). Molecular architecture of the mouse nervous system. Cell 174, 999-1014.e22 e1022.
Zheng Y, Liu P, Bai L, Trimmer JS, Bean BP & Ginty DD (2019). Deep sequencing of somatosensory neurons reveals molecular determinants of intrinsic physiological properties. Neuron 103, 598-616.e7 e597.
Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, Nau C, Wood JN & Reeh PW (2007). Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447, 856-859.