Butyrate and Propionate Restore the Cytokine and House Dust Mite Compromised Barrier Function of Human Bronchial Airway Epithelial Cells.
Animals
Biomarkers
Butyrates
/ pharmacology
Cytokines
/ metabolism
Disease Susceptibility
Epithelial Cells
/ metabolism
Fatty Acids, Volatile
/ metabolism
Gene Expression
Humans
MAP Kinase Signaling System
Propionates
/ pharmacology
Pyroglyphidae
/ immunology
Respiratory Mucosa
/ drug effects
Time Factors
Zonula Occludens-1 Protein
/ genetics
MAPK signalling pathways
ZO-1
airway epithelial barrier function
short-chain fatty acids
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
23 Dec 2020
23 Dec 2020
Historique:
received:
23
11
2020
revised:
14
12
2020
accepted:
19
12
2020
entrez:
30
12
2020
pubmed:
31
12
2020
medline:
2
4
2021
Statut:
epublish
Résumé
Barrier dysfunction of airway epithelium contributes to the development of allergies, airway hyper-responsiveness and immunological respiratory diseases. Short-chain fatty acids (SCFA) enhance and restore the barrier function of the intestinal epithelium. This study investigated whether acetate, propionate and butyrate enhance the integrity of bronchial epithelial cells. Differentiating human bronchial epithelial cells (16HBE) grown on transwells were exposed to butyrate, propionate and acetate while trans-epithelial electrical resistance was monitored over time. Restorative effects of SCFA were investigated by subsequent incubation of cells with IL-4, IL-13 or house dust mite extract and SCFA. SCFA effects on IL-4-induced cytokine production and the expression of zonula occludens-1 (ZO-1) and Mitogen-activated protein kinases (MAPK) signalling pathways were investigated by ELISA and Western blot assays. Propionate and butyrate enhanced the barrier function of differentiating 16HBE cells and induced complete recovery of the barrier function after exposure to the above-mentioned stimuli. Butyrate decreased IL-4-induced IL-6 production. IL-4 decreased ZO-1 protein expression and induced phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) and c-Jun N-terminal kinases (JNK) in 16HBE cells, both of which could be restored by SCFA. SCFA showed prophylactic and restorative effects on airway epithelial barrier function, which might be induced by increased ZO-1 expression.
Identifiants
pubmed: 33374733
pii: ijms22010065
doi: 10.3390/ijms22010065
pmc: PMC7793466
pii:
doi:
Substances chimiques
Biomarkers
0
Butyrates
0
Cytokines
0
Fatty Acids, Volatile
0
Propionates
0
TJP1 protein, human
0
Zonula Occludens-1 Protein
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Science. 2001 May 11;292(5519):1115-8
pubmed: 11352068
Allergol Immunopathol (Madr). 2019 Jan - Feb;47(1):2-11
pubmed: 30458973
Biochim Biophys Acta. 2008 Mar;1778(3):729-56
pubmed: 17950242
Front Immunol. 2015 Apr 02;6:147
pubmed: 25883597
J Infect Dis. 1999 Oct;180(4):1267-74
pubmed: 10479157
J Allergy Clin Immunol. 2019 Feb;143(2):577-590
pubmed: 29902480
J Immunol. 1998 Oct 1;161(7):3645-51
pubmed: 9759888
Mucosal Immunol. 2018 May;11(3):785-795
pubmed: 29067994
Cochrane Database Syst Rev. 2001;(1):CD002160
pubmed: 11279754
Arch Biochem Biophys. 1999 Aug 1;368(1):45-55
pubmed: 10415110
Tissue Barriers. 2013 Apr 1;1(2):e24333
pubmed: 24665390
Curr Opin Cell Biol. 2005 Oct;17(5):453-8
pubmed: 16098725
J Appl Bacteriol. 1991 Jun;70(6):443-59
pubmed: 1938669
J Immunol. 1994 Sep 1;153(5):2122-9
pubmed: 7914217
Am J Physiol Lung Cell Mol Physiol. 2019 Jan 1;316(1):L157-L174
pubmed: 30407866
Curr Treat Options Gastroenterol. 2002 Aug;5(4):311-321
pubmed: 12095479
Gastroenterology. 2013 Aug;145(2):396-406.e1-10
pubmed: 23665276
PLoS One. 2017 Jun 27;12(6):e0179586
pubmed: 28654658
Toxins (Basel). 2017 Dec 27;10(1):
pubmed: 29280945
Immunity. 2015 Jul 21;43(1):29-40
pubmed: 26200011
Am J Respir Cell Mol Biol. 2019 May;60(5):554-568
pubmed: 30648905
Cell Mol Immunol. 2019 Mar;16(3):225-235
pubmed: 30792500
Tissue Barriers. 2013 Oct 1;1(4):e24997
pubmed: 24665407
Clin Exp Allergy. 2014 Nov;44(11):1299-313
pubmed: 24661647
J Allergy Clin Immunol. 2000 Jun;105(6 Pt 1):1185-93
pubmed: 10856154
Dig Dis Sci. 2012 Dec;57(12):3126-35
pubmed: 22684624
J Allergy Clin Immunol. 2014 Sep;134(3):509-20
pubmed: 25085341
Am J Clin Nutr. 1987 May;45(5 Suppl):1243-55
pubmed: 3034048
Br J Clin Pharmacol. 2003 Dec;56(6):588-99
pubmed: 14616418
Can J Physiol Pharmacol. 2008 Mar;86(3):105-12
pubmed: 18418437
Biochim Biophys Acta. 2011 Sep;1812(9):1104-10
pubmed: 21684332
J Allergy Clin Immunol. 1998 Jul;102(1):75-85
pubmed: 9679850
Ann Am Thorac Soc. 2014 Dec;11 Suppl 5:S244-51
pubmed: 25525727
Annu Rev Cell Dev Biol. 2006;22:207-35
pubmed: 16771626
Annu Rev Pathol. 2007;2:111-43
pubmed: 18039095
Nat Commun. 2015 Apr 01;6:6734
pubmed: 25828455
Nat Rev Immunol. 2015 Jan;15(1):57-65
pubmed: 25534623
In Vitro Cell Dev Biol. 1992 Nov-Dec;28A(11-12):735-44
pubmed: 1282914
Dig Liver Dis. 2002 Sep;34 Suppl 2:S37-43
pubmed: 12408438
J Nutr. 2013 Dec;143(12):1872-81
pubmed: 24132573
J Allergy Clin Immunol. 2011 Sep;128(3):549-56.e1-12
pubmed: 21752437
Qual Saf Health Care. 2002 Dec;11(4):376-82
pubmed: 12468702
Thorax. 2012 Jun;67(6):488-95
pubmed: 22167364
Immunity. 2014 Jan 16;40(1):128-39
pubmed: 24412617
Lab Invest. 2012 Aug;92(8):1140-8
pubmed: 22584669
Respir Res. 2018 Nov 28;19(1):234
pubmed: 30486816
Environ Pollut. 2017 Dec;231(Pt 2):1314-1321
pubmed: 28916279