The Influence of Disorder in the Synthesis, Characterization and Applications of a Modifiable Two-Dimensional Covalent Organic Framework.
carbonylation
carboxylated pores
disorder
ion sieving
nanoporous covalent organic frameworks
Journal
Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929
Informations de publication
Date de publication:
25 Dec 2020
25 Dec 2020
Historique:
received:
05
11
2020
revised:
24
11
2020
accepted:
22
12
2020
entrez:
30
12
2020
pubmed:
31
12
2020
medline:
31
12
2020
Statut:
epublish
Résumé
Two-dimensional covalent organic frameworks (2D-COFs) have been of increasing interest in the past decade due to their porous structures that ideally can be highly ordered. One of the most common routes to these polymers relies on Schiff-base chemistry, i.e., the condensation reaction between a carbonyl and an amine. In this report, we elaborate on the condensation of 3,6-dibromobenzene-1,2,4,5-tetraamine with hexaketocyclohexane (HKH) and the subsequent carbonylation of the resulting COF, along with the possibility that the condensation reaction on HKH can result in a trans configuration resulting in the formation of a disordered 2D-COF. This strategy enables modification of COFs via bromine substitution reactions to place functional groups within the pores of the materials. Ion-sieving measurements using membranes from this COF, reaction of small molecules with unreacted keto groups along with modeling studies indicate disorder in the COF polymerization process. We also present a Monte Carlo simulation that demonstrates the influence of even small amounts of disorder upon both the 2D and 3D structure of the resulting COF.
Identifiants
pubmed: 33375732
pii: ma14010071
doi: 10.3390/ma14010071
pmc: PMC7795170
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : U.S. Department of Energy
ID : DE-SC0020100
Organisme : National Science Foundation
ID : CHE 13-58498
Références
Chem Soc Rev. 2016 Oct 10;45(20):5635-5671
pubmed: 27341661
Nat Commun. 2015 Mar 06;6:6486
pubmed: 25744355
J Am Chem Soc. 2009 Apr 8;131(13):4570-1
pubmed: 19281246
Nanoscale. 2017 Mar 23;9(12):4090-4096
pubmed: 28294255
Nat Mater. 2016 Jul;15(7):722-6
pubmed: 27043780
Chem Soc Rev. 2020 Dec 7;49(23):8469-8500
pubmed: 33155009
Acc Chem Res. 2015 Dec 15;48(12):3053-63
pubmed: 26580002
Science. 2017 Aug 18;357(6352):673-676
pubmed: 28818940
J Am Chem Soc. 2013 Jan 16;135(2):546-9
pubmed: 23270524
Nat Commun. 2016 Apr 22;7:11408
pubmed: 27102837
Science. 2017 Mar 3;355(6328):
pubmed: 28254887
Chem Soc Rev. 2012 Sep 21;41(18):6010-22
pubmed: 22821129
Nat Chem. 2013 Jun;5(6):453-65
pubmed: 23695626
Nat Commun. 2013;4:2736
pubmed: 24220603
Org Lett. 2010 Oct 15;12(20):4470-3
pubmed: 20843090
J Am Chem Soc. 2018 Dec 26;140(51):18200-18207
pubmed: 30512941
Angew Chem Int Ed Engl. 2017 Jun 6;56(24):6946-6951
pubmed: 28318084
J Am Chem Soc. 2018 Mar 7;140(9):3306-3311
pubmed: 29394058
Angew Chem Int Ed Engl. 2011 Sep 5;50(37):8753-7
pubmed: 21842523
Angew Chem Int Ed Engl. 2013 May 17;52(21):5513-7
pubmed: 23589363