Cilia density and flow velocity affect alignment of motile cilia from brain cells.
Brain development
Fluid flow
Hydrodynamic forces
Journal
The Journal of experimental biology
ISSN: 1477-9145
Titre abrégé: J Exp Biol
Pays: England
ID NLM: 0243705
Informations de publication
Date de publication:
29 12 2020
29 12 2020
Historique:
received:
22
05
2020
accepted:
29
10
2020
entrez:
30
12
2020
pubmed:
31
12
2020
medline:
22
6
2021
Statut:
epublish
Résumé
In many organs, thousands of microscopic 'motile cilia' beat in a coordinated fashion generating fluid flow. Physiologically, these flows are important in both development and homeostasis of ciliated tissues. Combining experiments and simulations, we studied how cilia from brain tissue align their beating direction. We subjected cilia to a broad range of shear stresses, similar to the fluid flow that cilia themselves generate, in a microfluidic setup. In contrast to previous studies, we found that cilia from mouse ependyma respond and align to these physiological shear stress at all maturation stages. Cilia align more easily earlier in maturation, and we correlated this property with the increase in multiciliated cell density during maturation. Our numerical simulations show that cilia in densely packed clusters are hydrodynamically screened from the external flow, in agreement with our experimental observation. Cilia carpets create a hydrodynamic screening that reduces the susceptibility of individual cilia to external flows.
Identifiants
pubmed: 33376093
pii: 223/24/jeb229310
doi: 10.1242/jeb.229310
pmc: PMC7790191
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2020. Published by The Company of Biologists Ltd.
Déclaration de conflit d'intérêts
Competing interestsThe authors declare no competing or financial interests.
Références
Science. 2006 Feb 3;311(5761):629-32
pubmed: 16410488
Nature. 2007 May 3;447(7140):97-101
pubmed: 17450123
J Pharm Pharmacol. 2005 Apr;57(4):521-6
pubmed: 15831215
Science. 2016 Jul 8;353(6295):176-8
pubmed: 27387952
J Neurosci. 2005 Jan 5;25(1):10-8
pubmed: 15634762
Respirology. 2003 Dec;8(4):432-46
pubmed: 14708552
Biol Rev Camb Philos Soc. 1974 Feb;49(1):85-125
pubmed: 4206625
J R Soc Interface. 2013 Jul 24;10(87):20130571
pubmed: 23883957
Biomicrofluidics. 2014 Nov 14;8(6):064104
pubmed: 25553181
Lab Chip. 2007 Jun;7(6):681-94
pubmed: 17538709
J Am Chem Soc. 2005 Feb 16;127(6):1592-3
pubmed: 15700965
Nat Rev Mol Cell Biol. 2007 Nov;8(11):880-93
pubmed: 17955020
Neuroimage. 2010 May 15;51(1):42-52
pubmed: 20152907
Philos Trans R Soc Lond B Biol Sci. 2020 Feb 17;375(1792):20190152
pubmed: 31884919
Lab Chip. 2009 May 21;9(10):1403-11
pubmed: 19417907
Ann N Y Acad Sci. 1966 Sep 30;130(3):944-50
pubmed: 5222720
Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8315-8325
pubmed: 32217737
Eur Biophys J. 2007 Dec;37(1):35-54
pubmed: 18027008
Development. 2010 Sep;137(18):3037-46
pubmed: 20685736
Curr Biol. 2012 Dec 4;22(23):2203-12
pubmed: 23122850
Soft Matter. 2018 Jul 25;14(29):5955-5967
pubmed: 29897096
Biophys J. 2007 Mar 15;92(6):1900-17
pubmed: 17189311
J Cell Biol. 2008 Feb 11;180(3):633-43
pubmed: 18250199
Nat Cell Biol. 2010 Apr;12(4):341-50
pubmed: 20305650
Methods Cell Biol. 2015;127:19-35
pubmed: 25837384
Dev Cell. 2018 Sep 10;46(5):595-610.e3
pubmed: 30205038
Nat Commun. 2018 Jun 11;9(1):2279
pubmed: 29891944
Phys Rev E. 2019 Oct;100(4-1):043117
pubmed: 31770991
Am J Physiol Lung Cell Mol Physiol. 2013 Jun 1;304(11):L736-45
pubmed: 23525783
Nat Genet. 2018 Dec;50(12):1666-1673
pubmed: 30420648
J Microsc. 2003 Aug;211(Pt 2):103-11
pubmed: 12887704
Nat Rev Mol Cell Biol. 2017 Jul;18(7):423-436
pubmed: 28400610