Interplay among Oxidative Stress, Methylglyoxal Pathway and S-Glutathionylation.
S-D-lactoylglutathione
glutathione
glutathionylation
glyoxalase system
methylglyoxal
mitochondria
redox signaling
Journal
Antioxidants (Basel, Switzerland)
ISSN: 2076-3921
Titre abrégé: Antioxidants (Basel)
Pays: Switzerland
ID NLM: 101668981
Informations de publication
Date de publication:
28 Dec 2020
28 Dec 2020
Historique:
received:
05
12
2020
revised:
17
12
2020
accepted:
23
12
2020
entrez:
31
12
2020
pubmed:
1
1
2021
medline:
1
1
2021
Statut:
epublish
Résumé
Reactive oxygen species (ROS) are produced constantly inside the cells as a consequence of nutrient catabolism. The balance between ROS production and elimination allows to maintain cell redox homeostasis and biological functions, avoiding the occurrence of oxidative distress causing irreversible oxidative damages. A fundamental player in this fine balance is reduced glutathione (GSH), required for the scavenging of ROS as well as of the reactive 2-oxoaldehydes methylglyoxal (MGO). MGO is a cytotoxic compound formed constitutively as byproduct of nutrient catabolism, and in particular of glycolysis, detoxified in a GSH-dependent manner by the glyoxalase pathway consisting in glyoxalase I and glyoxalase II reactions. A physiological increase in ROS production (oxidative eustress, OxeS) is promptly signaled by the decrease of cellular GSH/GSSG ratio which can induce the reversible S-glutathionylation of key proteins aimed at restoring the redox balance. An increase in MGO level also occurs under oxidative stress (OxS) conditions probably due to several events among which the decrease in GSH level and/or the bottleneck of glycolysis caused by the reversible S-glutathionylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. In the present review, it is shown how MGO can play a role as a stress signaling molecule in response to OxeS, contributing to the coordination of cell metabolism with gene expression by the glycation of specific proteins. Moreover, it is highlighted how the products of MGO metabolism, S-D-lactoylglutathione (SLG) and D-lactate, which can be taken up and metabolized by mitochondria, could play important roles in cell response to OxS, contributing to cytosol-mitochondria crosstalk, cytosolic and mitochondrial GSH pools, energy production, and the restoration of the GSH/GSSG ratio. The role for SLG and glyoxalase II in the regulation of protein function through S-glutathionylation under OxS conditions is also discussed. Overall, the data reported here stress the need for further studies aimed at understanding what role the evolutionary-conserved MGO formation and metabolism can play in cell signaling and response to OxS conditions, the aberration of which may importantly contribute to the pathogenesis of diseases associated to elevated OxS.
Identifiants
pubmed: 33379155
pii: antiox10010019
doi: 10.3390/antiox10010019
pmc: PMC7824032
pii:
doi:
Types de publication
Journal Article
Review
Langues
eng
Références
Biofactors. 2019 Mar;45(2):152-168
pubmed: 30561781
Biochim Biophys Acta. 1988 Jun 29;955(1):103-10
pubmed: 3382669
EMBO J. 2012 Jun 15;31(14):3169-82
pubmed: 22705944
Nat Commun. 2019 Apr 1;10(1):1477
pubmed: 30931947
Biochem Biophys Res Commun. 2002 Jul 26;295(4):910-6
pubmed: 12127981
Int J Mol Sci. 2020 Oct 30;21(21):
pubmed: 33143095
Kobe J Med Sci. 2008 Feb 08;53(6):305-15
pubmed: 18762725
J Clin Invest. 1991 Apr;87(4):1345-51
pubmed: 1849148
Circ Res. 1999 Mar 19;84(5):489-97
pubmed: 10082470
Mitochondrion. 2003 Apr;2(5):319-43
pubmed: 16120331
J Pharmacol Sci. 2009 Dec;111(4):426-32
pubmed: 19966511
Free Radic Biol Med. 2005 Jan 15;38(2):286-93
pubmed: 15607912
Handb Exp Pharmacol. 2017;240:71-101
pubmed: 27783269
Int J Mol Sci. 2017 Jan 18;18(1):
pubmed: 28106778
Front Plant Sci. 2015 Sep 03;6:682
pubmed: 26388885
Diabetes. 1991 Apr;40(4):405-12
pubmed: 2010041
Free Radic Biol Med. 2010 Oct 15;49(7):1221-9
pubmed: 20638471
Gen Physiol Biophys. 2002 Sep;21(3):257-65
pubmed: 12537350
Redox Biol. 2018 Jul;17:367-376
pubmed: 29857311
Antioxid Redox Signal. 2011 Jul 1;15(1):233-70
pubmed: 21235352
Biochem J. 2002 Jul 15;365(Pt 2):391-403
pubmed: 11955284
Free Radic Biol Med. 2013 Sep;62:13-25
pubmed: 23665395
Ageing Res Rev. 2019 Aug;53:100915
pubmed: 31173890
Antioxid Redox Signal. 2020 Jun;32(18):1330-1347
pubmed: 31218894
J Allergy Clin Immunol. 2003 Jul;112(1):126-33
pubmed: 12847489
Antioxidants (Basel). 2020 Oct 16;9(10):
pubmed: 33081239
Neurobiol Aging. 2006 Jun;27(6):815-22
pubmed: 15950319
Physiol Rev. 1979 Jul;59(3):527-605
pubmed: 37532
Chem Biol Interact. 2008 Feb 15;171(3):251-71
pubmed: 18164697
Redox Biol. 2018 Apr;14:465-473
pubmed: 29080525
Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):12971-3
pubmed: 10557256
Biochemistry. 1989 Apr 18;28(8):3562-8
pubmed: 2742854
Biochem J. 2012 Apr 1;443(1):213-22
pubmed: 22188542
Int J Mol Sci. 2017 Jan 20;18(1):
pubmed: 28117669
Antioxidants (Basel). 2020 Sep 24;9(10):
pubmed: 32987701
Cell Biochem Funct. 2016 Dec;34(8):620-627
pubmed: 27935136
Korean J Physiol Pharmacol. 2014 Feb;18(1):1-14
pubmed: 24634591
FEBS Lett. 2015 Feb 27;589(5):621-8
pubmed: 25637873
Front Neurosci. 2015 Feb 09;9:23
pubmed: 25709564
Photosynth Res. 2006 Sep;89(2-3):225-45
pubmed: 17089213
Antioxid Redox Signal. 2018 Jan 20;28(3):251-272
pubmed: 28648096
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5103-6
pubmed: 12697895
Ann N Y Acad Sci. 2005 Jun;1043:135-45
pubmed: 16037232
Nature. 2001 Dec 13;414(6865):813-20
pubmed: 11742414
Drug Metabol Drug Interact. 2008;23(1-2):69-91
pubmed: 18533365
Diabetes Res Clin Pract. 1989 Aug 1;7(2):115-20
pubmed: 2776650
Biochem Biophys Res Commun. 1987 Jun 15;145(2):769-74
pubmed: 3593370
Redox Biol. 2020 May;32:101472
pubmed: 32171726
Arch Biochem Biophys. 2008 Jun 1;474(1):119-27
pubmed: 18374655
Sci Signal. 2012 Sep 18;5(242):pe39
pubmed: 22990116
Biochem Soc Trans. 1993 May;21(2):161S
pubmed: 8359414
Biochem Soc Trans. 1993 May;21(2):160S
pubmed: 8359413
Free Radic Biol Med. 2018 May 20;120:204-216
pubmed: 29578070
Front Plant Sci. 2016 Sep 13;7:1341
pubmed: 27679640
J Biol Chem. 2001 Dec 21;276(51):47763-6
pubmed: 11684673
Crit Rev Oncol Hematol. 1995 Aug;20(1-2):99-128
pubmed: 7576201
Proteins. 2000 Oct 1;41(1):33-9
pubmed: 10944391
Food Funct. 2016 Dec 7;7(12):4772-4780
pubmed: 27812566
Biochemistry. 2008 Jan 8;47(1):473-8
pubmed: 18081316
Nat Commun. 2020 Apr 24;11(1):2018
pubmed: 32332750
Biomolecules. 2020 Jan 06;10(1):
pubmed: 31935965
Front Plant Sci. 2017 Dec 05;8:2071
pubmed: 29259615
Biochim Biophys Acta. 1999 Jan 4;1426(1):1-16
pubmed: 9878674
Redox Biol. 2016 Aug;8:110-8
pubmed: 26773874
Biochim Biophys Acta. 1987 Nov 12;931(2):120-9
pubmed: 3663711
Diabetes Metab Res Rev. 2001 Nov-Dec;17(6):436-43
pubmed: 11757079
J Gerontol A Biol Sci Med Sci. 2007 Apr;62(4):427-33
pubmed: 17452738
Biomed Pharmacother. 2020 Nov;131:110663
pubmed: 32858501
Int J Angiol. 2010 Summer;19(2):e58-65
pubmed: 22477591
Arch Biochem Biophys. 2000 Jan 1;373(1):193-202
pubmed: 10620338
Cell. 2006 Jan 27;124(2):258-60
pubmed: 16439200
Biochem J. 2009 Jan 1;417(1):1-13
pubmed: 19061483
Int J Biochem Cell Biol. 2008;40(2):245-57
pubmed: 17869161
Circ Res. 2001 May 11;88(9):947-53
pubmed: 11349005
Biochem J. 1990 Jul 1;269(1):1-11
pubmed: 2198020
Brain Res. 1999 Apr 24;826(1):53-62
pubmed: 10216196
Biochem J. 1988 Sep 15;254(3):751-5
pubmed: 3196289
Neurochem Res. 2015 Dec;40(12):2570-82
pubmed: 25428182
Antioxid Redox Signal. 2017 Nov 20;27(15):1162-1177
pubmed: 28558477
Free Radic Biol Med. 2014 Feb;67:451-9
pubmed: 24333633
Biochem J. 2013 Jul 1;453(1):1-15
pubmed: 23763312
Biochem Soc Trans. 2014 Apr;42(2):425-32
pubmed: 24646255
Biochem J. 2002 May 15;364(Pt 1):101-4
pubmed: 11988081
Diabetes. 2010 Mar;59(3):670-8
pubmed: 20009088
Antioxidants (Basel). 2020 Feb 01;9(2):
pubmed: 32024152
Redox Biol. 2017 Apr;11:613-619
pubmed: 28110218
Diabetes. 1999 Jan;48(1):1-9
pubmed: 9892215
Antioxidants (Basel). 2019 Jan 17;8(1):
pubmed: 30658464
Mol Cell Biochem. 2007 Nov;305(1-2):235-53
pubmed: 17562131
Cell. 2013 Jun 6;153(6):1239-51
pubmed: 23746840
Org Biomol Chem. 2018 Jul 18;16(28):5167-5177
pubmed: 29971290
Mol Cells. 2003 Apr 30;15(2):194-9
pubmed: 12803482
Biochim Biophys Acta. 2013 May;1830(5):3154-64
pubmed: 23206830
Int J Biochem. 1993 Nov;25(11):1565-70
pubmed: 8288025
J Mol Cell Cardiol. 1998 Aug;30(8):1571-9
pubmed: 9737943
Antioxid Redox Signal. 2009 Nov;11(11):2685-700
pubmed: 19558212
J Biol Chem. 2006 Sep 8;281(36):26702-13
pubmed: 16831876
Clin Sci (Lond). 2015 Jun;128(12):839-61
pubmed: 25818485
Glycoconj J. 2016 Aug;33(4):513-25
pubmed: 27406712
Eur J Biochem. 1993 Feb 15;212(1):101-5
pubmed: 8444148
Am J Physiol. 1997 Jan;272(1 Pt 1):C99-108
pubmed: 9038816
Nature. 1979 Jan 11;277(5692):135-7
pubmed: 83539
Antonie Van Leeuwenhoek. 2012 Jun;102(1):163-75
pubmed: 22460278
J Biol Chem. 2005 Oct 28;280(43):36273-82
pubmed: 16118208
Kidney Int. 2004 Dec;66(6):2315-21
pubmed: 15569321
Oxid Med Cell Longev. 2013;2013:972913
pubmed: 23766865
J Gen Physiol. 2012 Jun;139(6):479-91
pubmed: 22585969
Can J Physiol Pharmacol. 2005 Jan;83(1):91-7
pubmed: 15759055
Biochim Biophys Acta. 1992 Jun 10;1135(2):159-64
pubmed: 1616937
Wiley Interdiscip Rev RNA. 2016 Jan-Feb;7(1):53-70
pubmed: 26564736
BMC Genomics. 2020 Feb 10;21(1):145
pubmed: 32041545
Arch Biochem Biophys. 1991 Dec;291(2):291-9
pubmed: 1952942
Biochim Biophys Acta. 1989 Oct 13;993(1):7-11
pubmed: 2804125
J Clin Biochem Nutr. 2015 Jul;57(1):21-6
pubmed: 26236096
Toxicol Lett. 1999 Nov 22;110(3):145-75
pubmed: 10597025
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3505-10
pubmed: 11904414
Free Radic Biol Med. 2017 Nov;112:360-375
pubmed: 28807817
Antioxidants (Basel). 2019 Sep 09;8(9):
pubmed: 31505772
Biol Reprod. 2004 Sep;71(3):1002-8
pubmed: 15151930
J Biol Chem. 1981 Jun 25;256(12):6230-3
pubmed: 7240200
EMBO J. 1997 Jun 16;16(12):3386-95
pubmed: 9218781