The modern management of Barrett's oesophagus and related neoplasia: role of pathology.
Barrett’s
SM1 carcinoma
dysplasia grading
intramucosal carcinoma
phenotypes
Journal
Histopathology
ISSN: 1365-2559
Titre abrégé: Histopathology
Pays: England
ID NLM: 7704136
Informations de publication
Date de publication:
Jan 2021
Jan 2021
Historique:
received:
15
08
2020
revised:
14
10
2020
accepted:
21
10
2020
entrez:
31
12
2020
pubmed:
1
1
2021
medline:
6
10
2021
Statut:
ppublish
Résumé
Modern management of Barrett's oesophagus and related neoplasia essentially focuses upon surveillance to detect early low-risk neoplastic lesions and offering organ-preserving advanced endoscopic therapies, while traditional surgical treatments of oesophagectomy and lymph node clearance with or without chemoradiation are preserved only for high-risk and advanced carcinomas. With this evolution towards figless invasive therapy, the choice of therapy hinges upon the pathological assessment for risk stratifying patients into those with low risk for nodal metastasis who can continue with less invasive endoscopic therapies and others with high risk for nodal metastasis for which surgery or other forms of treatment are indicated. Detection and confirmation of neoplasia in the first instance depends upon endoscopic and pathological assessment. Endoscopic examination and biopsy sampling should be performed according to the recommended protocols, and endoscopic biopsy interpretation should be performed applying standard criteria using appropriate ancillary studies by histopathologists experienced in the pathology of Barrett's disease. Endoscopic resections (ERs) are both diagnostic and curative and should be performed by clinicians who are skilled with advanced endoscopic techniques. Proper preparation and handling of ERs are essential to assess histological parameters that dictate the curative nature of the procedure. Those parameters are adequacy of resection and risk of lymph node metastasis. The risk of lymph node metastasis is determined by depth invasion and presence of poor differentiation and lymphovascular invasion. Those adenocarcinomas with invasion up to muscularis mucosae (pT1a) and those with superficial submucosal invasion (pT1b) up to 500 µ with no poor differentiation and lymphovascular invasion and negative margins may be considered cured by endoscopic resections.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
18-38Informations de copyright
© 2020 John Wiley & Sons Ltd.
Références
Whiteman DC, Appleyard M, Bahin FF et al. Australian clinical practice guidelines for the diagnosis and management of Barrett’s esophagus and early esophageal adenocarcinoma. J. Gastroenterol. Hepatol. 2015; 30; 804-820.
Hvid-Jensen F, Pedersen L, Drewes AM, Sørensen HT, Funch-Jensen P. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N. Engl. J. Med. 2011; 365; 1375-1383.
Paull A, Trier JS, Dalton MD, Camp RC, Loeb P, Goyal RK. The histologic spectrum of Barrett’s esophagus. N. Engl. J. Med. 1976; 295; 476-480.
Salimian KJ, Waters KM, Eze O et al. Definition of Barrett esophagus in the United States: support for retention of a requirement for goblet cells. Am. J. Surg. Pathol. 2018; 42; 264-268.
Bhat S, Coleman HG, Yousef F et al. Risk of malignant progression in Barrett’s esophagus patients: results from a large population-based study. J. Natl Cancer Inst. 2011; 103; 1049-1057.
Bansal A, McGregor DH, Anand O et al. Presence or absence of intestinal metaplasia but not its burden is associated with prevalent high-grade dysplasia and cancer in Barrett’s esophagus. Dis. Esophagus 2014; 27; 751-756.
Aida J, Vieth M, Shepherd NA et al. Is carcinoma in columnar-lined esophagus always located adjacent to intestinal metaplasia? A histopathologic assessment. Am. J. Surg. Pathol. 2015; 39; 188-196.
Takubo K, Aida J, Naomoto Y et al. Cardiac rather than intestinal-type background in endoscopic resection specimens of minute Barrett adenocarcinoma. Hum. Pathol. 2009; 40; 65-74.
Smith J, Garcia A, Zhang R, DeMeester S, Vallone J, Chandrasoma P. Intestinal metaplasia is present in most if not all patients who have undergone endoscopic mucosal resection for esophageal adenocarcinoma. Am. J. Surg. Pathol. 2016; 40; 537-543.
Allanson BM, Bonavita J, Mirzai B et al. Early Barrett esophagus-related neoplasia in segments 1 cm or longer is always associated with intestinal metaplasia. Mod. Pathol. 2017; 30; 1170-1176.
Kelty CJ, Gough MD, Van Wyk Q, Stephenson TJ, Ackroyd R. Barrett’s oesophagus: intestinal metaplasia is not essential for cancer risk. Scand. J. Gastroenterol. 2007; 42; 1271-1274.
Endoscopic Classification Review Group. Update on the Paris classification of superficial neoplastic lesions in the digestive tract. Endoscopy 2005; 37; 570-578.
Fitzgerald RC, di Pietro M, Ragunath K et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut 2014; 63; 7-42.
Panarelli NC, Yantiss RK. Do ancillary studies aid detection and classification of Barrett esophagus? Am. J. Surg. Pathol. 2016; 40; e83-e93.
Abela JE, Going JJ, Mackenzie JF, McKernan M, O’Mahoney S, Stuart RC. Systematic four-quadrant biopsy detects Barrett’s dysplasia in more patients than nonsystematic biopsy. Am. J. Gastroenterol. 2008; 103; 850-855.
Levine DS, Blount PL, Rudolph RE, Reid BJ. Safety of a systematic endoscopic biopsy protocol in patients with Barrett’s esophagus. Am. J. Gastroenterol. 2000; 95; 1152-1157.
Downs-Kelly E, Mendelin JE, Bennett AE et al. Poor interobserver agreement in the distinction of high-grade dysplasia and adenocarcinoma in pretreatment Barrett’s esophagus biopsies. Am. J. Gastroenterol. 2008; 103; 2333-1340; quiz 41.
Duits LC, Phoa KN, Curvers WL et al. Barrett’s oesophagus patients with low-grade dysplasia can be accurately risk-stratified after histological review by an expert pathology panel. Gut 2015; 64; 700-706.
Montgomery E, Bronner MP, Goldblum JR et al. Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation. Hum. Pathol. 2001; 32; 368-378.
Patil DT, Goldblum JR, Rybicki L et al. Prediction of adenocarcinoma in esophagectomy specimens based upon analysis of preresection biopsies of Barrett esophagus with at least high-grade dysplasia: a comparison of 2 systems. Am. J. Surg. Pathol. 2012; 36; 134-141.
Sonwalkar SA, Rotimi O, Scott N et al. A study of indefinite for dysplasia in Barrett’s oesophagus: reproducibility of diagnosis, clinical outcomes and predicting progression with AMACR (alpha-methylacyl-CoA-racemase). Histopathology 2010; 56; 900-907.
Mino-Kenudson M, Brugge WR, Puricelli WP et al. Management of superficial Barrett’s epithelium-related neoplasms by endoscopic mucosal resection: clinicopathologic analysis of 27 cases. Am. J. Surg. Pathol. 2005; 29; 680-686.
Merlo LM, Shah NA, Li X et al. A comprehensive survey of clonal diversity measures in Barrett’s esophagus as biomarkers of progression to esophageal adenocarcinoma. Cancer Prev. Res. 2010; 3; 1388-1397.
Reid BJ, Sanchez CA, Blount PL, Levine DS. Barrett’s esophagus: cell cycle abnormalities in advancing stages of neoplastic progression. Gastroenterology 1993; 105; 119-129.
Rabinovitch PS, Longton G, Blount PL, Levine DS, Reid BJ. Predictors of progression in Barrett’s esophagus III: baseline flow cytometric variables. Am. J. Gastroenterol. 2001; 96; 3071-3083.
Maley CC, Galipeau PC, Finley JC et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 2006; 38; 468-473.
Fels Elliott DR, Fitzgerald RC. Molecular markers for Barrett’s esophagus and its progression to cancer. Curr. Opin. Gastroenterol. 2013; 29; 437-445.
Raftopoulos SC, Segarajasingam DS, Burke V, Ee HC, Yusoff IF. A cohort study of missed and new cancers after esophagogastroduodenoscopy. Am. J. Gastroenterol. 2010; 105; 1292-1297.
World Health Organization (WHO). Classification of Tumours Editorial Board. Digestive System Tumours. WHO Classification of Tumours series. Lyon, France: International Agency for Research on Cancer Press, 2019; 347-354.
Rucker-Schmidt RL, Sanchez CA, Blount PL et al. Nonadenomatous dysplasia in Barrett esophagus: a clinical, pathologic, and DNA content flow cytometric study. Am. J. Surg. Pathol. 2009; 33; 886-893.
Brown IS, Whiteman DC, Lauwers GY. Foveolar type dysplasia in Barrett esophagus. Mod. Pathol. 2010; 23; 834-843.
Khor TS, Alfaro EE, Ooi EM et al. Divergent expression of MUC5AC, MUC6, MUC2, CD10, and CDX-2 in dysplasia and intramucosal adenocarcinomas with intestinal and foveolar morphology: is this evidence of distinct gastric and intestinal pathways to carcinogenesis in Barrett esophagus? Am. J. Surg. Pathol. 2012; 36; 331-342.
Vieth M, Montgomery EA, Riddell RH. Observations of different patterns of dysplasia in Barrett’s esophagus - a first step to harmonize grading. Cesk. Patol. 2016; 52; 154-663.
Thurberg BL, Duray PH, Odze RD. Polypoid dysplasia in Barrett’s esophagus: a clinicopathologic, immunohistochemical, and molecular study of five cases. Hum. Pathol. 1999; 30; 745-752.
Asthana N, Mandich D, Ligato S. Esophageal polypoid dysplasia of gastric foveolar phenotype with focal intramucosal carcinoma associated with Barrett’s esophagus. Am. J. Surg. Pathol. 2008; 32; 1581-1585.
Mahajan D, Bennett AE, Liu X, Bena J, Bronner MP. Grading of gastric foveolar-type dysplasia in Barrett’s esophagus. Mod. Pathol. 2010; 23; 1-11.
Srivastava A, Appelman H, Goldsmith JD, Davison JM, Hart J, Krasinskas AM. The use of ancillary stains in the diagnosis of Barrett esophagus and Barrett esophagus-associated dysplasia: recommendations from the Rodger C. Haggitt Gastrointestinal Pathology Society. Am. J. Surg. Pathol. 2017; 41; e8-e21.
Lomo LC, Blount PL, Sanchez CA et al. Crypt dysplasia with surface maturation: a clinical, pathologic, and molecular study of a Barrett’s esophagus cohort. Am. J. Surg. Pathol. 2006; 30; 423-435.
Odze RD. Update on the diagnosis and treatment of Barrett esophagus and related neoplastic precursor lesions. Arch. Pathol. Lab. Med. 2008; 132; 1577-1585.
Montgomery E, Goldblum JR, Greenson JK et al. Dysplasia as a predictive marker for invasive carcinoma in Barrett esophagus: a follow-up study based on 138 cases from a diagnostic variability study. Hum. Pathol. 2001; 32; 379-388.
Kaye PV, Haider SA, Ilyas M et al. Barrett’s dysplasia and the Vienna classification: reproducibility, prediction of progression and impact of consensus reporting and p53 immunohistochemistry. Histopathology 2009; 54; 699-712.
Kastelein F, Biermann K, Steyerberg EW et al. Aberrant p53 protein expression is associated with an increased risk of neoplastic progression in patients with Barrett’s oesophagus. Gut 2013; 62; 1676-1683.
Toon C, Allanson B, Leslie C et al. Patterns of p53 immunoreactivity in non-neoplastic and neoplastic Barrett’s mucosa of the oesophagus: in-depth evaluation in endoscopic mucosal resections. Pathology 2019; 51; 253-260.
van der Wel MJ, Duits LC, Pouw RE et al. Improved diagnostic stratification of digitised Barrett's oesophagus biopsies by p53 immunohistochemical staining. Histopathology 2018; 72; 1015-1023.
Kaye PV, Ilyas M, Soomro I et al. Dysplasia in Barrett’s oesophagus: p53 immunostaining is more reproducible than haematoxylin and eosin diagnosis and improves overall reliability, while grading is poorly reproducible. Histopathology 2016; 69; 431-440.
Lin EW, Karakasheva TA, Hicks PD, Bass AJ, Rustgi AK. The tumor microenvironment in esophageal cancer. Oncogene 2016; 35; 5337-5349.
Takubo K, Sasajima K, Yamashita K, Tanaka Y, Fujita K. Double muscularis mucosae in Barrett’s esophagus. Hum. Pathol. 1991; 22; 1158-1161.
Rubio CA, Riddell R. Musculo-fibrous anomaly in Barrett’s mucosa with dysplasia. Am. J. Surg. Pathol. 1988; 12; 885-889.
Abraham SC, Krasinskas AM, Correa AM et al. Duplication of the muscularis mucosae in Barrett esophagus: an underrecognized feature and its implication for staging of adenocarcinoma. Am. J. Surg. Pathol. 2007; 31; 1719-1725.
DeMeester SR, DeMeester TR. The diagnosis and management of Barrett’s esophagus. Adv. Surg. 1999; 33; 29-68.
Younes Z, Duncan MD, Harmon JW. Management of Barrett’s esophagus. Can. J. Gastroenterol. 2000; 14(Suppl. D); 35d-43d.
Osugi H, Takemura M, Higashino M et al. Learning curve of video-assisted thoracoscopic esophagectomy and extensive lymphadenectomy for squamous cell cancer of the thoracic esophagus and results. Surg. Endosc. 2003; 17; 515-519.
Ben-David K, Sarosi GA, Cendan JC, Howard D, Rossidis G, Hochwald SN. Decreasing morbidity and mortality in 100 consecutive minimally invasive esophagectomies. Surg. Endosc. 2012; 26; 162-167.
Gockel I, Exner C, Junginger T. Morbidity and mortality after esophagectomy for esophageal carcinoma: a risk analysis. World J. Surg. Oncol. 2005; 3; 37.
Bennett C, Vakil N, Bergman J et al. Consensus statements for management of Barrett’s dysplasia and early-stage esophageal adenocarcinoma, based on a Delphi process. Gastroenterology 2012; 143; 336-346.
Ell C, May A, Pech O, Gossner L et al. Curative endoscopic resection of early esophageal adenocarcinomas (Barrett’s cancer). Gastrointest. Endosc. 2007; 65; 3-10.
Pech O, Bollschweiler E, Manner H, Leers J, Ell C, Holscher AH. Comparison between endoscopic and surgical resection of mucosal esophageal adenocarcinoma in Barrett’s esophagus at two high-volume centers. Ann. Surg. 2011; 254; 67-72.
Prasad GA, Wang KK, Buttar NS et al. Long-term survival following endoscopic and surgical treatment of high-grade dysplasia in Barrett’s esophagus. Gastroenterology 2007; 132; 1226-1233.
Chennat J, Konda VJ, Ross AS et al. Complete Barrett’s eradication endoscopic mucosal resection: an effective treatment modality for high-grade dysplasia and intramucosal carcinoma - an American single-center experience. Am. J. Gastroenterol. 2009; 104; 2684-2692.
Konda VJ, Gonzalez Haba Ruiz M, Koons A et al. Complete endoscopic mucosal resection is effective and durable treatment for Barrett’s-associated neoplasia. Clin. Gastroenterol. Hepatol. 2014; 12; 2002-2010 e1-2.
Bahin FF, Jayanna M, Hourigan LF et al. Long-term outcomes of a primary complete endoscopic resection strategy for short-segment Barrett’s esophagus with high-grade dysplasia and or early esophageal adenocarcinoma. Gastrointest. Endosc. 2016; 83; 68-77.
Chung A, Bourke MJ, Hourigan LF et al. Complete Barrett’s excision by stepwise endoscopic resection in short-segment disease: long term outcomes and predictors of stricture. Endoscopy 2011; 43; 1025-1032.
Larghi A, Lightdale CJ, Ross AS et al. Long-term follow-up of complete Barrett’s eradication endoscopic mucosal resection (CBE-EMR) for the treatment of high grade dysplasia and intramucosal carcinoma. Endoscopy 2007; 39; 1086-1091.
Shaheen NJ, Inadomi JM, Overholt BF, Sharma P. What is the best management strategy for high grade dysplasia in Barrett’s oesophagus? A cost effectiveness analysis. Gut 2004; 53; 1736-1744.
Hu Y, Puri V, Shami VM, Stukenborg GJ, Kozower BD. Comparative effectiveness of esophagectomy versus endoscopic treatment for esophageal high-grade dysplasia. Ann. Surg. 2016; 263; 719-726.
Vieth M, Stolte M. Pathology of early upper GI cancers. Best Pract. Res. Clin. Gastroenterol. 2005; 19; 857-869.
Holscher AH, Vallbohmer D, Bollschweiler E. Early Barrett’s carcinoma of the esophagus. Ann. Thorac. Cardiovasc. Surg. 2008; 14; 347-354.
Liu L, Hofstetter WL, Rashid A et al. Significance of the depth of tumor invasion and lymph node metastasis in superficially invasive (T1) esophageal adenocarcinoma. Am. J. Surg. Pathol. 2005; 29; 1079-1085.
Pennathur A, Farkas A, Krasinskas AM et al. Esophagectomy for T1 esophageal cancer: outcomes in 100 patients and implications for endoscopic therapy. Ann. Thorac. Surg. 2009; 87; 1048-1054; discussion 54-55.
Zemler B, May A, Ell C, Stolte M. Early Barrett’s carcinoma: the depth of infiltration of the tumour correlates with the degree of differentiation, the incidence of lymphatic vessel and venous invasion. Virchows Arch. 2010; 456; 609-614.
Rice TW, Zuccaro G Jr, Adelstein DJ, Rybicki LA, Blackstone EH, Goldblum JR. Esophageal carcinoma: depth of tumor invasion is predictive of regional lymph node status. Ann. Thorac. Surg. 1998; 65; 787-792.
Dunbar KB, Spechler SJ. The risk of lymph-node metastases in patients with high-grade dysplasia or intramucosal carcinoma in Barrett’s esophagus: a systematic review. Am. J. Gastroenterol. 2012; 107; 850-862; quiz 63.
Sgourakis G, Gockel I, Lang H. Endoscopic and surgical resection of T1a T1b esophageal neoplasms: a systematic review. World J. Gastroenterol. 2013; 19; 1424-1437.
Koelzer VH, Langer R, Zlobec I, Lugli A. Tumor budding in upper gastrointestinal carcinomas. Front. Oncol. 2014; 4; 216.
Ancona E, Rampado S, Cassaro M et al. Prediction of lymph node status in superficial esophageal carcinoma. Ann. Surg. Oncol. 2008; 15; 3278-3288.
Gockel I, Sgourakis G, Lyros O et al. Risk of lymph node metastasis in submucosal esophageal cancer: a review of surgically resected patients. Exp. Rev. Gastroenterol Hepatol. 2011; 5; 371-384.
Manner H, Pech O, Heldmann Y et al. Efficacy, safety, and long-term results of endoscopic treatment for early stage adenocarcinoma of the esophagus with low-risk sm1 invasion. Clin. Gastroenterol. Hepatol. 2013; 11; 630-635; quiz e45.
Manner H, May A, Pech O et al. Early Barrett's carcinoma with ‘low-risk’ submucosal invasion: long-term results of endoscopic resection with a curative intent. Am. J. Gastroenterol. 2008; 103; 2589-2597.
Peters FP, Brakenhoff KP, Curvers WL et al. Histologic evaluation of resection specimens obtained at 293 endoscopic resections in Barrett’s esophagus. Gastrointest. Endosc. 2008; 67; 604-609.
Fotis D, Doukas M, Wijnhoven BP et al. Submucosal invasion and risk of lymph node invasion in early Barrett’s cancer: potential impact of different classification systems on patient management. United Eur. Gastroenterol. J. 2015; 3; 505-513.
Conio M, Fisher DA, Blanchi S, Ruggeri C, Filiberti R, Siersema PD. One-step circumferential endoscopic mucosal cap resection of Barrett’s esophagus with early neoplasia. Clin. Res. Hepatol. Gastroenterol. 2014; 38; 81-91.
Gerke H, Siddiqui J, Nasr I, Van Handel DM, Jensen CS. Efficacy and safety of EMR to completely remove Barrett’s esophagus: experience in 41 patients. Gastrointest. Endosc. 2011; 74; 761-771.
Pouw RE, Peters FP, Sempoux C, Piessevaux H, Deprez PH. Stepwise radical endoscopic resection for Barrett’s esophagus with early neoplasia: report on a Brussels’ cohort. Endoscopy 2008; 40; 892-898.
Pouw RE, Seewald S, Gondrie JJ et al. Stepwise radical endoscopic resection for eradication of Barrett’s oesophagus with early neoplasia in a cohort of 169 patients. Gut 2010; 59; 1169-1177.
Chadwick G, Groene O, Markar SR, Hoare J, Cromwell D, Hanna GB. Systematic review comparing radiofrequency ablation and complete endoscopic resection in treating dysplastic Barrett’s esophagus: a critical assessment of histologic outcomes and adverse events. Gastrointest. Endosc. 2014; 79; 718-731 e3.
Bahin FF, Jayanna M, Williams SJ, Lee EY, Bourke MJ. Efficacy of viscous budesonide slurry for prevention of esophageal stricture formation after complete endoscopic mucosal resection of short-segment Barrett’s neoplasia. Endoscopy 2016; 48; 71-74.
Desai M, Saligram S, Gupta N et al. Efficacy and safety outcomes of multimodal endoscopic eradication therapy in Barrett’s esophagus-related neoplasia: a systematic review and pooled analysis. Gastrointest. Endosc. 2017; 85; 482-495 e4.
Komeda Y, Bruno M, Koch A. EMR is not inferior to ESD for early Barrett’s and EGJ neoplasia: an extensive review on outcome, recurrence and complication rates. Endosc. Int. Open. 2014; 2; E58-E64.
Kumarasinghe MP, Brown I, Raftopoulos S et al. Standardised reporting protocol for endoscopic resection for Barrett’s oesophagus associated neoplasia: expert consensus recommendations. Pathology 2014; 46; 473-480.
Kumarasinghe MP, Bourke MJ, Brown I et al. Pathological assessment of endoscopic resections of the gastrointestinal tract: a comprehensive clinicopathologic review. Mod. Pathol. 2020; 33; 986-1006.
Phoa KN, van Vilsteren FG, Weusten BL et al. Radiofrequency ablation vs endoscopic surveillance for patients with Barrett esophagus and low-grade dysplasia: a randomized clinical trial. JAMA 2014; 311; 1209-1217.
Westerterp M, Koppert LB, Buskens CJ et al. Outcome of surgical treatment for early adenocarcinoma of the esophagus or gastro-esophageal junction. Virchows Arch. 2005; 446; 497-504.
Nagata K, Shimizu M. Pathological evaluation of gastrointestinal endoscopic submucosal dissection materials based on Japanese guidelines. World J. Gastrointest. Endosc. 2012; 4; 489-499.
Overwater A, van der Meulen KE, Künzli HT et al. Optimizing histopathologic evaluation of EMR specimens of Barrett’s esophagus-related neoplasia: a randomized study of 3 specimen handling methods. Gastrointest. Endosc. 2019; 90; 384-392 e5.
Geramizadeh B, Owen DA. Handling and pathology reporting of gastrointestinal endoscopic mucosal resection. Middle East J. Dig. Dis. 2017; 9; 5-11.
Allanson BM, Kumarasinghe MP. Macroscopic assessment and cut up of endoscopic resection specimens for early esophageal glandular malignancies. Methods Mol. Biol. 2018; 1756; 77-83.
Mojtahed A, Shimoda T. Proper pathologic preparation and assessment of endoscopic mucosal resection and endoscopic submucosal dissection specimens. Techn. Gastrointest. Endosc. 2011; 13; 95-99.
Ueno H, Mochizuki H, Hashiguchi Y et al. Risk factors for an adverse outcome in early invasive colorectal carcinoma. Gastroenterology 2004; 127; 385-394.
Kidane B, Korst RJ, Weksler B et al. Neoadjuvant therapy vs upfront surgery for clinical T2N0 esophageal cancer: a systematic review. Ann. Thorac. Surg. 2019; 108; 935-944.
Markar SR, Gronnier C, Pasquer A et al. Role of neoadjuvant treatment in clinical T2N0M0 oesophageal cancer: results from a retrospective multi-center European study. Eur. J. Cancer 2016; 56; 59-68.
Samson P, Puri V, Robinson C, Lockhart C et al. Clinical T2N0 esophageal cancer: identifying pretreatment characteristics associated with pathologic upstaging and the potential role for induction therapy. Ann. Thorac. Surg. 2016; 101; 2102-2111.
van Hagen P, Hulshof MC, van Lanschot JJ et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N. Engl. J. Med. 2012; 366; 2074-2084.
Cunningham D, Allum WH, Stenning SP et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med. 2006; 355; 11-20.
Donahue JM, Nichols FC, Li Z et al. Complete pathologic response after neoadjuvant chemoradiotherapy for esophageal cancer is associated with enhanced survival. Ann. Thorac. Surg. 2009; 87; 392-398; discussion 8-9.
Noordman BJ, Wijnhoven BPL, Lagarde SM et al. Neoadjuvant chemoradiotherapy plus surgery versus active surveillance for oesophageal cancer: a stepped-wedge cluster randomised trial. BMC Cancer 2018; 18; 142.
Shapiro J, ten Kate FJ, van Hagen P, Biermann K, Wijnhoven BP, van Lanschot JJ. Residual esophageal cancer after neoadjuvant chemoradiotherapy frequently involves the mucosa and submucosa. Ann. Surg. 2013; 258; 678-688; discussion 88-89.
Noordman BJ, Spaander MCW, Valkema R et al. Detection of residual disease after neoadjuvant chemoradiotherapy for oesophageal cancer (preSANO): a prospective multicentre, diagnostic cohort study. Lancet Oncol. 2018; 19; 965-974.
Low DE, Allum W, De Manzoni G et al. Guidelines for perioperative care in esophagectomy: Enhanced Recovery After Surgery (ERAS((R))) Society Recommendations. World J. Surg. 2019; 43; 299-330.
Low DE, Alderson D, Cecconello I et al. International consensus on standardization of data collection for complications associated with esophagectomy: Esophagectomy Complications Consensus Group (ECCG). Ann. Surg. 2015; 262; 286-294.
Zhou C, Zhang L, Wang H et al. Superiority of minimally invasive oesophagectomy in reducing in-hospital mortality of patients with resectable oesophageal cancer: a meta-analysis. PLoS One 2015; 10; e0132889.
Yibulayin W, Abulizi S, Lv H, Sun W. Minimally invasive oesophagectomy versus open esophagectomy for resectable esophageal cancer: a meta-analysis. World J. Surg. Oncol. 2016; 14; 304.
Mariette C, Markar SR, Dabakuyo-Yonli TS et al. Hybrid minimally invasive esophagectomy for esophageal cancer. N. Engl. J. Med. 2019; 380; 152-162.
van der Sluis PC, van der Horst S, May AM et al. Robot-assisted minimally invasive thoracolaparoscopic esophagectomy versus open transthoracic esophagectomy for resectable esophageal cancer: a randomized controlled trial. Ann. Surg. 2019; 269; 621-630.
Worrell SG, Bachman KC, Sarode AL, Perry Y, Linden PA, Towe CW. Minimally invasive esophagectomy is associated with superior survival, lymphadenectomy and surgical margins: propensity matched analysis of the National Cancer Database. Dis. Esophagus 2020; 33. https://doi.org/10.1093/dote/doaa017
Patel K, Askari A, Moorthy K. Long-term oncological outcomes following completely minimally invasive esophagectomy versus open esophagectomy. Dis. Esophagus 2020; 33. https://doi.org/10.1093/dote/doz113
Wilke H, Muro K, Van Cutsem E et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014; 15; 1224-1235.
Fuchs CS, Tomasek J, Yong CJ et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014; 383; 31-39.
Bang YJ, Van Cutsem E, Feyereislova A et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010; 376; 687-697.
Lee S, de Boer WB, Fermoyle S, Platten M, Kumarasinghe MP. Human epidermal growth factor receptor 2 testing in gastric carcinoma: issues related to heterogeneity in biopsies and resections. Histopathology 2011; 59; 832-840.
Davidson M, Starling N. Trastuzumab in the management of gastroesophageal cancer: patient selection and perspectives. Onco. Targets Ther. 2016; 9; 7235-7245.
Kumarasinghe MP, Morey A, Bilous M et al. HER2 testing in advanced gastric and gastro-oesophageal cancer: analysis of an Australia-wide testing program. Pathology 2017; 49; 575-581.
Wong DD, de Boer WB, Platten MA, Jo VY, Cibas ES, Kumarasinghe MP. HER2 testing in malignant effusions of metastatic gastric carcinoma: is it feasible? Diagn. Cytopathol. 2015; 43; 80-85.
Wong DD, Kumarasinghe MP, Platten MA, de Boer WB. Concordance of HER2 expression in paired primary and metastatic sites of gastric and gastro-oesophageal junction cancers. Pathology 2015; 47; 641-666.
Kojima T, Doi T. Immunotherapy for esophageal squamous cell carcinoma. Curr. Oncol. Rep. 2017; 19; 33.
Weinberg BA, Xiu J, Hwang JJ, Shields AF, Salem ME, Marshall JL. Immuno-oncology biomarkers for gastric and gastroesophageal junction adenocarcinoma: why PD-L1 testing may not be enough. Oncologist 2018; 23; 1171-1177.
Amin M. AJCC Cancer Staging Manual, 8th edn. Washington M, editor. Chicago: Springer; 2017.
Langer R, Becker K. Tumor regression grading of gastrointestinal cancers after neoadjuvant therapy. Virchows Arch. 2018; 472; 175-186.
Mandard AM, Dalibard F, Mandard JC et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 1994; 73; 2680-2686.
Ryan R, Gibbons D, Hyland JM et al. Pathological response following long-course neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Histopathology 2005; 47; 141-146.
Patrão AS, Papaxoinis G, Kordatou Z et al. Prognostic significance of positive circumferential resection margin post neoadjuvant chemotherapy in patients with esophageal or gastro-esophageal junction adenocarcinoma. Eur. J. Surg. Oncol. 2019; 45; 439-445.
Rao VS, Yeung MM, Cooke J, Salim E, Jain PK. Comparison of circumferential resection margin clearance criteria with survival after surgery for cancer of esophagus. J. Surg. Oncol. 2012; 105; 745-749.