Sevoflurane-Induced Neuroapoptosis in Rat Dentate Gyrus Is Activated by Autophagy Through NF-κB Signaling on the Late-Stage Progenitor Granule Cells.
NF-κB
apoptosis
autophagy
dentate gyrus
differentiation
sevoflurane
Journal
Frontiers in cellular neuroscience
ISSN: 1662-5102
Titre abrégé: Front Cell Neurosci
Pays: Switzerland
ID NLM: 101477935
Informations de publication
Date de publication:
2020
2020
Historique:
received:
02
08
2020
accepted:
12
11
2020
entrez:
1
1
2021
pubmed:
2
1
2021
medline:
2
1
2021
Statut:
epublish
Résumé
The mechanisms by which exposure of the late-stage progenitor cells to the anesthesia sevoflurane alters their differentiation are not known. We seek to query whether the effects of sevoflurane on late-stage progenitor cells might be regulated by apoptosis and/or autophagy. To address the short-term impact of sevoflurane exposure on granule cell differentiation, we used 5-bromo-2-deoxyuridine (BrdU) to identify the labeled late-stage progenitor granule cells. Male or female rats were exposed to 3% sevoflurane for 4 h when the labeled granule cells were 2 weeks old. Differentiation of the BrdU-labeled granule cells was quantified 4 and 7 days after exposure by double immunofluorescence. The expression of apoptosis and autophagy in hippocampal dentate gyrus (DG) was determined by western blot and immunofluorescence. Western blot for the expression of NF-κB was used to evaluate the mechanism. Morris water maze (MWM) test was performed to detect cognitive function in the rats on postnatal 28-33 days. Exposure to sevoflurane decreased the differentiation of the BrdU-labeled late-stage progenitor granule cells, but increased the expression of caspase-3, autophagy, and phosphorylated-P65 in the hippocampus of juvenile rats and resulted in cognitive deficiency. These damaging effects of sevoflurane could be mitigated by inhibitors of autophagy, apoptosis, and NF-κB. The increased apoptosis could be alleviated by pretreatment with the autophagy inhibitor 3-MA, and the increased autophagy and apoptosis could be reduced by pretreatment with NF-κB inhibitor BAY 11-7085. These findings suggest that a single, prolonged sevoflurane exposure could impair the differentiation of late-stage progenitor granule cells in hippocampal DG and cause cognitive deficits possibly via apoptosis activated by autophagy through NF-κB signaling. Our results do not preclude the possibility that the affected differentiation and functional deficits may be caused by depletion of the progenitors pool.
Identifiants
pubmed: 33384584
doi: 10.3389/fncel.2020.590577
pmc: PMC7769878
doi:
Types de publication
Journal Article
Langues
eng
Pagination
590577Informations de copyright
Copyright © 2020 Tong, Ma, Su, Wang, Xu, Zhang, Wu, Liu and Zhao.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Epilepsy Curr. 2019 Sep;19(5):316-320
pubmed: 31409149
Toxicol Sci. 2016 Jan;149(1):121-33
pubmed: 26424773
Anesthesiology. 2013 Mar;118(3):502-15
pubmed: 23314110
Front Mol Neurosci. 2017 Dec 22;10:432
pubmed: 29311820
J Neurosci Res. 2002 Nov 1;70(3):327-34
pubmed: 12391592
J Cell Mol Med. 2008 Apr;12(2):459-70
pubmed: 18182066
Front Immunol. 2019 May 09;10:1043
pubmed: 31143184
J Comp Neurol. 2010 Nov 15;518(22):4479-90
pubmed: 20886617
Prog Neuropsychopharmacol Biol Psychiatry. 2009 Oct 1;33(7):1087-102
pubmed: 19596396
Pharmazie. 2017 Apr 1;72(4):214-218
pubmed: 29441990
PLoS Biol. 2017 Jul 6;15(7):e2001246
pubmed: 28683067
Toxicol Sci. 2016 Dec;154(2):309-319
pubmed: 27562558
Lancet. 2019 Feb 16;393(10172):664-677
pubmed: 30782342
Hippocampus. 2012 Jan;22(1):106-16
pubmed: 20882540
Nat Rev Neurosci. 2010 May;11(5):339-50
pubmed: 20354534
Br J Anaesth. 2019 Dec;123(6):818-826
pubmed: 31570162
Neurochem Res. 2017 Feb;42(2):595-605
pubmed: 27882447
J Anesth. 2017 Dec;31(6):821-828
pubmed: 28913662
Lancet. 2016 Jan 16;387(10015):239-50
pubmed: 26507180
Anesth Analg. 2010 Feb;110(2):431-7
pubmed: 19917621
Curr Opin Urol. 2017 Jan;27(1):27-33
pubmed: 27755141
Anesthesiology. 2016 Dec;125(6):1159-1170
pubmed: 27655218
Br J Anaesth. 2014 Sep;113(3):443-51
pubmed: 24431386
Neurotoxicol Teratol. 2017 Mar - Apr;60:87-94
pubmed: 27919700
Int J Mol Med. 2018 Nov;42(5):2481-2488
pubmed: 30226560
Acta Anaesthesiol Scand. 2013 Oct;57(9):1167-74
pubmed: 23889296
Ann Neurol. 2013 Jun;73(6):695-704
pubmed: 23526697
Anesth Analg. 2013 Apr;116(4):845-54
pubmed: 23460572
Hippocampus. 2017 Nov;27(11):1155-1167
pubmed: 28686814
J Cell Physiol. 2019 Apr;234(4):3864-3873
pubmed: 30191980
Nat Cell Biol. 2007 Sep;9(9):1081-8
pubmed: 17704767
Eur Rev Med Pharmacol Sci. 2017 Jan;21(2):394-407
pubmed: 28165545
Cold Spring Harb Perspect Biol. 2015 Sep 01;7(9):a018812
pubmed: 26330519
Neuroreport. 2005 Aug 1;16(11):1147-50
pubmed: 16012338
J Neurosci. 2016 Oct 26;36(43):10990-11005
pubmed: 27798180
Mol Neurobiol. 2016 Mar;53(2):1031-1044
pubmed: 25577171
Anesthesiology. 2009 Apr;110(4):796-804
pubmed: 19293700
J Cereb Blood Flow Metab. 2010 May;30(5):1017-30
pubmed: 20068576
Neurosci Bull. 2012 Oct;28(5):499-508
pubmed: 22965743
Free Radic Biol Med. 2019 Jan;130:576-591
pubmed: 30458278
Cold Spring Harb Perspect Biol. 2016 Mar 01;8(3):a025981
pubmed: 26931327
Apoptosis. 2019 Apr;24(3-4):269-277
pubmed: 30680482
Cells. 2017 Aug 23;6(3):
pubmed: 28832529