Immuno-PET imaging of


Journal

Cancer immunology, immunotherapy : CII
ISSN: 1432-0851
Titre abrégé: Cancer Immunol Immunother
Pays: Germany
ID NLM: 8605732

Informations de publication

Date de publication:
Jun 2021
Historique:
received: 06 09 2020
accepted: 02 12 2020
pubmed: 3 1 2021
medline: 1 6 2021
entrez: 2 1 2021
Statut: ppublish

Résumé

The checkpoint blockade immunotherapy has become a potent treatment strategy for cancers, and programmed death ligand-1 (PD-L1) is a prominent checkpoint ligand that is highly expressed in some cancers. The identification of immune checkpoint marker PD-L1 is critical for improving the success of immunotherapy. Accordingly, the binding specificity and dynamic monitoring property of a non-blocking nanobody tracer

Identifiants

pubmed: 33386467
doi: 10.1007/s00262-020-02818-y
pii: 10.1007/s00262-020-02818-y
doi:

Substances chimiques

Antineoplastic Agents 0
B7-H1 Antigen 0
CD274 protein, human 0
Gallium Radioisotopes 0
Radiopharmaceuticals 0
Single-Domain Antibodies 0
Cisplatin Q20Q21Q62J

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1721-1733

Subventions

Organisme : National Natural Science Foundation of China
ID : 81972906
Organisme : National Natural Science Foundation of China
ID : 81971645
Organisme : National Natural Science Foundation of China
ID : 22076069
Organisme : Key Youth Medical Talent Project of Jiangsu Province
ID : QNRC2016626
Organisme : Key Youth Medical Talent Project of Jiangsu Province
ID : QNRC2016629
Organisme : Precision Medical Project of Wuxi Commission of Health and Family Planning
ID : J201806
Organisme : Innovation Capacity Development Plan of Jiangsu Province
ID : BM2018023
Organisme : Natural Science Foundation of Jiangsu Province
ID : BK20181128
Organisme : Natural Science Foundation of Jiangsu Province
ID : BK20201135
Organisme : Major Scientific Research Project of Wuxi Commission of Health
ID : Z201913

Références

Dal Bello MG, Alama A, Coco S, Vanni I, Grossi F (2017) Understanding the checkpoint blockade in lung cancer immunotherapy. Drug Discov Today. 22(8):1266–1273. https://doi.org/10.1016/j.drudis.2017.05.016
doi: 10.1016/j.drudis.2017.05.016
Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. https://doi.org/10.1038/nrc3239
doi: 10.1038/nrc3239 pubmed: 22437870 pmcid: 4856023
Hira R, Francisco S-V, Konnor L, Walid C, Philip J, Darragh H et al (2018) Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 36(7):633–641. https://doi.org/10.1200/JCO.2017.75.3384
doi: 10.1200/JCO.2017.75.3384
Ferrara R, Mezquita L, Texier M, Lahmar J, Audigier-Valette C, Tessonnier L et al (2018) Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol. 4(11):1543–1552. https://doi.org/10.1001/jamaoncol.2018.3676
doi: 10.1001/jamaoncol.2018.3676 pubmed: 30193240 pmcid: 6248085
Bellmunt J, Powles T, Vogelzang NJ (2017) A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: the future is now. Cancer Treat Rev 54:58–67. https://doi.org/10.1016/j.ctrv.2017.01.007
doi: 10.1016/j.ctrv.2017.01.007 pubmed: 28214651
Jung HI, Jeong D, Ji S, Ahn TS, Bae SH, Chin S et al (2017) Overexpression of PD-L1 and PD-L2 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res Treat. 49(1):246–254. https://doi.org/10.4143/crt.2016.066
doi: 10.4143/crt.2016.066 pubmed: 27456947
Rezaeeyan H, Hassani SN, Barati M, Shahjahani M, Saki N (2017) PD-1/PD-L1 as a prognostic factor in leukemia. J Hematopathol. 10(1):17–24. https://doi.org/10.1007/s12308-017-0293-z
doi: 10.1007/s12308-017-0293-z
Postow MA, Callahan MK, Wolchok JD (2015) Immune Checkpoint Blockade in Cancer Therapy. J Clin Oncol 33(17):1974–1982. https://doi.org/10.1200/JCO.2014.59.4358
doi: 10.1200/JCO.2014.59.4358 pubmed: 25605845 pmcid: 4980573
Cheng M, Durm G, Hanna N, Einhorn LH, Kong FS (2017) Can radiotherapy potentiate the effectiveness of immune checkpoint inhibitors in lung cancer? Future Oncol. 13(28):2503–2505. https://doi.org/10.2217/fon-2017-0405
doi: 10.2217/fon-2017-0405 pubmed: 29168656
Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X (2015) Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 21(1):24–33. https://doi.org/10.1016/j.molmed.2014.10.009
doi: 10.1016/j.molmed.2014.10.009 pubmed: 25440090
Gibney GT, Weiner LM, Atkins MB (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 17(12):e542–e551. https://doi.org/10.1016/s1470-2045(16)30406-5
doi: 10.1016/s1470-2045(16)30406-5 pubmed: 27924752 pmcid: 5702534
Wang X, Teng F, Kong L, Yu J (2016) PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets Ther. 9:5023–5039. https://doi.org/10.2147/OTT.S105862
doi: 10.2147/OTT.S105862 pubmed: 27574444 pmcid: 4990391
Aguiar PN, Andrade DMR, Peter H, Hakaru T, Gilberto DL (2017) PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: updated survival data. Immunotherapy. 9(6):499–506
doi: 10.2217/imt-2016-0150 pubmed: 28472902
Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5):275–287. https://doi.org/10.1038/nrc.2016.36
doi: 10.1038/nrc.2016.36 pubmed: 27079802 pmcid: 5381938
Rehman JA, Han G, Carvajal-Hausdorf DE, Wasserman BE, Pelekanou V, Mani NL et al (2017) Quantitative and pathologist-read comparison of the heterogeneity of programmed death-ligand 1 (PD-L1) expression in non-small cell lung cancer. Mod Pathol 30(3):340–349. https://doi.org/10.1038/modpathol.2016.186
doi: 10.1038/modpathol.2016.186 pubmed: 27834350
Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M, Kulangara K et al (2017) PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol. 12(2):208–222. https://doi.org/10.1016/j.jtho.2016.11.2228
doi: 10.1016/j.jtho.2016.11.2228 pubmed: 27913228
Patel SP, Kurzrock R (2015) PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol Cancer Ther 14(4):847–856. https://doi.org/10.1158/1535-7163.MCT-14-0983
doi: 10.1158/1535-7163.MCT-14-0983 pubmed: 25695955
Lesniak WG, Chatterjee S, Gabrielson M, Lisok A, Wharram B, Pomper MG et al (2016) PD-L1 detection in tumors using [(64)Cu]Atezolizumab with PET. Bioconjug Chem 27(9):2103–2110. https://doi.org/10.1021/acs.bioconjchem.6b00348
doi: 10.1021/acs.bioconjchem.6b00348 pubmed: 27458027 pmcid: 5289227
Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC et al (2018) (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 24(12):1852–1858. https://doi.org/10.1038/s41591-018-0255-8
doi: 10.1038/s41591-018-0255-8 pubmed: 30478423
Lv G, Sun X, Qiu L, Sun Y, Li K, Liu Q et al (2020) PET imaging of tumor PD-L1 expression with a highly specific nonblocking single-domain antibody. J Nucl Med 61(1):117–122. https://doi.org/10.2967/jnumed.119.226712
doi: 10.2967/jnumed.119.226712 pubmed: 31253743 pmcid: 6954462
Inman BA, Longo TA, Ramalingam S, Harrison MR (2017) Atezolizumab: a PD-L1-blocking antibody for bladder cancer. Clin Cancer Res 23(8):1886–1890. https://doi.org/10.1158/1078-0432.CCR-16-1417
doi: 10.1158/1078-0432.CCR-16-1417 pubmed: 27903674
Seetharamu N, Preeshagul IR, Sullivan KM (2017) New PD-L1 inhibitors in non-small cell lung cancer-impact of atezolizumab. Lung Cancer 8:67–78. https://doi.org/10.2147/LCTT.S113177
doi: 10.2147/LCTT.S113177 pubmed: 28761384 pmcid: 5516873
Vento J, Mulgaonkar A, Woolford L, Nham K, Christie A, Bagrodia A et al (2019) PD-L1 detection using (89)Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response. J Immunother Cancer. 7(1):144. https://doi.org/10.1186/s40425-019-0607-z
doi: 10.1186/s40425-019-0607-z pubmed: 31155004 pmcid: 6545669
De Silva RA, Kumar D, Lisok A, Chatterjee S, Wharram B, Venkateswara Rao K et al (2018) Peptide-based (68)Ga-PET radiotracer for imaging PD-L1 expression in cancer. Mol Pharm 15(9):3946–3952. https://doi.org/10.1021/acs.molpharmaceut.8b00399
doi: 10.1021/acs.molpharmaceut.8b00399 pubmed: 30037229 pmcid: 6127800
Kumar D, Lisok A, Dahmane E, McCoy M, Shelake S, Chatterjee S et al (2019) Peptide-based PET quantifies target engagement of PD-L1 therapeutics. J Clin Invest. 129(2):616–630. https://doi.org/10.1172/JCI122216
doi: 10.1172/JCI122216 pubmed: 30457978 pmcid: 6355241
Hu K, Kuan H, Hanyu M, Masayuki H, Xie L, Zhang Y et al (2019) Developing native peptide-based radiotracers for PD-L1 PET imaging and improving imaging contrast by pegylation. Chem Commun 55(29):4162–4165. https://doi.org/10.1039/c9cc00445a
doi: 10.1039/c9cc00445a
Pilotto S, Molina-Vila MA, Karachaliou N, Carbognin L, Viteri S, Gonzalez-Cao M et al (2015) Integrating the molecular background of targeted therapy and immunotherapy in lung cancer: a way to explore the impact of mutational landscape on tumor immunogenicity. Transl Lung Cancer Res. 4(6):721–727. https://doi.org/10.3978/j.issn.2218-6751.2015.10.11
doi: 10.3978/j.issn.2218-6751.2015.10.11 pubmed: 26798581 pmcid: 4700230
Ehlerding EB, Lee HJ, Barnhart TE, Jiang D, Kang L, McNeel DG et al (2019) Noninvasive imaging and quantification of radiotherapy-induced PD-L1 upregulation with (89)Zr-Df-Atezolizumab. Bioconjug Chem 30(5):1434–1441. https://doi.org/10.1021/acs.bioconjchem.9b00178
doi: 10.1021/acs.bioconjchem.9b00178 pubmed: 30973703 pmcid: 6521689
Mok TSK, Wu Y-L, Kudaba I, Kowalski DM, Cho BC, Turna HZ et al (2019) Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 393(10183):1819–1830. https://doi.org/10.1016/s0140-6736(18)32409-7
doi: 10.1016/s0140-6736(18)32409-7 pubmed: 30955977
Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A et al (2019) Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol 37(7):537–546
doi: 10.1200/JCO.18.00149 pubmed: 30620668
Yan F, Pang J, Peng Y, Molina JR, Yang P, Liu S (2016) Elevated cellular PD1/PD-L1 expression confers acquired resistance to cisplatin in small cell lung cancer cells. PLoS ONE 11(9):e0162925. https://doi.org/10.1371/journal.pone.0162925
doi: 10.1371/journal.pone.0162925 pubmed: 27610620 pmcid: 5017656
Wangpaichitr M, Kandemir H, Li YY, Wu C, Nguyen D, Feun LG et al (2017) Relationship of Metabolic Alterations and PD-L1 Expression in Cisplatin Resistant Lung Cancer. Cell Dev Biol. 6(2):183. https://doi.org/10.4172/2168-9296.1000183
doi: 10.4172/2168-9296.1000183 pubmed: 28819582 pmcid: 5557290
Fournel L, Wu Z, Stadler N, Damotte D, Lococo F, Boulle G et al (2019) Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer. Cancer Lett 464:5–14. https://doi.org/10.1016/j.canlet.2019.08.005
doi: 10.1016/j.canlet.2019.08.005 pubmed: 31404614
Chen R, Zhou X, Liu J, Huang G (2019) Relationship between the expression of PD-1/PD-L1 and (18)F-FDG uptake in bladder cancer. Eur J Nucl Med Mol Imaging. 46(4):848–854. https://doi.org/10.1007/s00259-018-4208-8
doi: 10.1007/s00259-018-4208-8 pubmed: 30627815
Jreige M, Letovanec I, Chaba K, Renaud S, Rusakiewicz S, Cristina V et al (2019) (18)F-FDG PET metabolic-to-morphological volume ratio predicts PD-L1 tumour expression and response to PD-1 blockade in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 46(9):1859–1868. https://doi.org/10.1007/s00259-019-04348-x
doi: 10.1007/s00259-019-04348-x pubmed: 31214790
Ehlerding EB, Lan X, Cai W (2019) Predicting PD-1/PD-L1 status in bladder cancer with (18)F-FDG PET? Eur J Nucl Med Mol Imaging. 46(4):791–793. https://doi.org/10.1007/s00259-018-4224-8
doi: 10.1007/s00259-018-4224-8 pubmed: 30536016
Wang X, Huang S, Zhang Y, Zhu L, Wu X (2018) The application and mechanism of PD pathway blockade for cancer therapy. Postgrad Med J 94(1107):53–60. https://doi.org/10.1136/postgradmedj-2017-135187
doi: 10.1136/postgradmedj-2017-135187 pubmed: 28942432
Chen L, Han X (2015) Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest. 125(9):3384–3391. https://doi.org/10.1172/JCI80011
doi: 10.1172/JCI80011 pubmed: 26325035 pmcid: 4588282
Constantinidou A, Alifieris C, Trafalis DT (2019) Targeting programmed cell death -1 (PD-1) and ligand (PD-L1): a new era in cancer active immunotherapy. Pharmacol Ther 194:84–106. https://doi.org/10.1016/j.pharmthera.2018.09.008
doi: 10.1016/j.pharmthera.2018.09.008 pubmed: 30268773
Wang PF, Chen Y, Song SY, Wang TJ, Ji WJ, Li SW et al (2017) Immune-Related Adverse Events Associated with Anti-PD-1/PD-L1 Treatment for Malignancies: a Meta-Analysis. Front Pharmacol. 8:730. https://doi.org/10.3389/fphar.2017.00730
doi: 10.3389/fphar.2017.00730 pubmed: 29093678 pmcid: 5651530
Guo D, Li M, Chen D, Jing W, Zhu H, Fu L et al (2019) Neutrophil-to-lymphocyte ratio is superior to platelet-to-lymphocyte ratio as a prognostic predictor in advanced non-small-cell lung cancer treated with first-line platinum-based chemotherapy. Future Oncol. 15(6):625–635
doi: 10.2217/fon-2018-0667 pubmed: 30430864
Takada K, Toyokawa G, Okamoto T, Baba S, Kozuma Y, Matsubara T et al (2017) Metabolic characteristics of programmed cell death-ligand 1-expressing lung cancer on (18) F-fluorodeoxyglucose positron emission tomography/computed tomography. Cancer Med 6(11):2552–2561. https://doi.org/10.1002/cam4.1215
doi: 10.1002/cam4.1215 pubmed: 28980429 pmcid: 5673920

Auteurs

Qingzhu Liu (Q)

NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.

Lei Jiang (L)

Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.

Ke Li (K)

NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.

Hang Li (H)

NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.

Gaochao Lv (G)

NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.

Jianguo Lin (J)

NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China. linjianguo@jsinm.org.
Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China. linjianguo@jsinm.org.

Ling Qiu (L)

NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China. qiuling@jsinm.org.
Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China. qiuling@jsinm.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH