Immuno-PET imaging of
Animals
Antineoplastic Agents
/ pharmacology
Apoptosis
B7-H1 Antigen
/ metabolism
Cell Proliferation
Cisplatin
/ pharmacology
Colonic Neoplasms
/ diagnostic imaging
Female
Gallium Radioisotopes
/ metabolism
Glioma
/ diagnostic imaging
Humans
Mice
Mice, Inbred BALB C
Mice, Nude
Positron-Emission Tomography
/ methods
Radiopharmaceuticals
/ metabolism
Single-Domain Antibodies
/ administration & dosage
Tumor Cells, Cultured
Xenograft Model Antitumor Assays
18F-FDG
68Ga
Nanobody tracer
PD-L1
PET imaging
Journal
Cancer immunology, immunotherapy : CII
ISSN: 1432-0851
Titre abrégé: Cancer Immunol Immunother
Pays: Germany
ID NLM: 8605732
Informations de publication
Date de publication:
Jun 2021
Jun 2021
Historique:
received:
06
09
2020
accepted:
02
12
2020
pubmed:
3
1
2021
medline:
1
6
2021
entrez:
2
1
2021
Statut:
ppublish
Résumé
The checkpoint blockade immunotherapy has become a potent treatment strategy for cancers, and programmed death ligand-1 (PD-L1) is a prominent checkpoint ligand that is highly expressed in some cancers. The identification of immune checkpoint marker PD-L1 is critical for improving the success of immunotherapy. Accordingly, the binding specificity and dynamic monitoring property of a non-blocking nanobody tracer
Identifiants
pubmed: 33386467
doi: 10.1007/s00262-020-02818-y
pii: 10.1007/s00262-020-02818-y
doi:
Substances chimiques
Antineoplastic Agents
0
B7-H1 Antigen
0
CD274 protein, human
0
Gallium Radioisotopes
0
Radiopharmaceuticals
0
Single-Domain Antibodies
0
Cisplatin
Q20Q21Q62J
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1721-1733Subventions
Organisme : National Natural Science Foundation of China
ID : 81972906
Organisme : National Natural Science Foundation of China
ID : 81971645
Organisme : National Natural Science Foundation of China
ID : 22076069
Organisme : Key Youth Medical Talent Project of Jiangsu Province
ID : QNRC2016626
Organisme : Key Youth Medical Talent Project of Jiangsu Province
ID : QNRC2016629
Organisme : Precision Medical Project of Wuxi Commission of Health and Family Planning
ID : J201806
Organisme : Innovation Capacity Development Plan of Jiangsu Province
ID : BM2018023
Organisme : Natural Science Foundation of Jiangsu Province
ID : BK20181128
Organisme : Natural Science Foundation of Jiangsu Province
ID : BK20201135
Organisme : Major Scientific Research Project of Wuxi Commission of Health
ID : Z201913
Références
Dal Bello MG, Alama A, Coco S, Vanni I, Grossi F (2017) Understanding the checkpoint blockade in lung cancer immunotherapy. Drug Discov Today. 22(8):1266–1273. https://doi.org/10.1016/j.drudis.2017.05.016
doi: 10.1016/j.drudis.2017.05.016
Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. https://doi.org/10.1038/nrc3239
doi: 10.1038/nrc3239
pubmed: 22437870
pmcid: 4856023
Hira R, Francisco S-V, Konnor L, Walid C, Philip J, Darragh H et al (2018) Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 36(7):633–641. https://doi.org/10.1200/JCO.2017.75.3384
doi: 10.1200/JCO.2017.75.3384
Ferrara R, Mezquita L, Texier M, Lahmar J, Audigier-Valette C, Tessonnier L et al (2018) Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol. 4(11):1543–1552. https://doi.org/10.1001/jamaoncol.2018.3676
doi: 10.1001/jamaoncol.2018.3676
pubmed: 30193240
pmcid: 6248085
Bellmunt J, Powles T, Vogelzang NJ (2017) A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: the future is now. Cancer Treat Rev 54:58–67. https://doi.org/10.1016/j.ctrv.2017.01.007
doi: 10.1016/j.ctrv.2017.01.007
pubmed: 28214651
Jung HI, Jeong D, Ji S, Ahn TS, Bae SH, Chin S et al (2017) Overexpression of PD-L1 and PD-L2 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res Treat. 49(1):246–254. https://doi.org/10.4143/crt.2016.066
doi: 10.4143/crt.2016.066
pubmed: 27456947
Rezaeeyan H, Hassani SN, Barati M, Shahjahani M, Saki N (2017) PD-1/PD-L1 as a prognostic factor in leukemia. J Hematopathol. 10(1):17–24. https://doi.org/10.1007/s12308-017-0293-z
doi: 10.1007/s12308-017-0293-z
Postow MA, Callahan MK, Wolchok JD (2015) Immune Checkpoint Blockade in Cancer Therapy. J Clin Oncol 33(17):1974–1982. https://doi.org/10.1200/JCO.2014.59.4358
doi: 10.1200/JCO.2014.59.4358
pubmed: 25605845
pmcid: 4980573
Cheng M, Durm G, Hanna N, Einhorn LH, Kong FS (2017) Can radiotherapy potentiate the effectiveness of immune checkpoint inhibitors in lung cancer? Future Oncol. 13(28):2503–2505. https://doi.org/10.2217/fon-2017-0405
doi: 10.2217/fon-2017-0405
pubmed: 29168656
Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X (2015) Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 21(1):24–33. https://doi.org/10.1016/j.molmed.2014.10.009
doi: 10.1016/j.molmed.2014.10.009
pubmed: 25440090
Gibney GT, Weiner LM, Atkins MB (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 17(12):e542–e551. https://doi.org/10.1016/s1470-2045(16)30406-5
doi: 10.1016/s1470-2045(16)30406-5
pubmed: 27924752
pmcid: 5702534
Wang X, Teng F, Kong L, Yu J (2016) PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets Ther. 9:5023–5039. https://doi.org/10.2147/OTT.S105862
doi: 10.2147/OTT.S105862
pubmed: 27574444
pmcid: 4990391
Aguiar PN, Andrade DMR, Peter H, Hakaru T, Gilberto DL (2017) PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: updated survival data. Immunotherapy. 9(6):499–506
doi: 10.2217/imt-2016-0150
pubmed: 28472902
Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5):275–287. https://doi.org/10.1038/nrc.2016.36
doi: 10.1038/nrc.2016.36
pubmed: 27079802
pmcid: 5381938
Rehman JA, Han G, Carvajal-Hausdorf DE, Wasserman BE, Pelekanou V, Mani NL et al (2017) Quantitative and pathologist-read comparison of the heterogeneity of programmed death-ligand 1 (PD-L1) expression in non-small cell lung cancer. Mod Pathol 30(3):340–349. https://doi.org/10.1038/modpathol.2016.186
doi: 10.1038/modpathol.2016.186
pubmed: 27834350
Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M, Kulangara K et al (2017) PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol. 12(2):208–222. https://doi.org/10.1016/j.jtho.2016.11.2228
doi: 10.1016/j.jtho.2016.11.2228
pubmed: 27913228
Patel SP, Kurzrock R (2015) PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol Cancer Ther 14(4):847–856. https://doi.org/10.1158/1535-7163.MCT-14-0983
doi: 10.1158/1535-7163.MCT-14-0983
pubmed: 25695955
Lesniak WG, Chatterjee S, Gabrielson M, Lisok A, Wharram B, Pomper MG et al (2016) PD-L1 detection in tumors using [(64)Cu]Atezolizumab with PET. Bioconjug Chem 27(9):2103–2110. https://doi.org/10.1021/acs.bioconjchem.6b00348
doi: 10.1021/acs.bioconjchem.6b00348
pubmed: 27458027
pmcid: 5289227
Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC et al (2018) (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 24(12):1852–1858. https://doi.org/10.1038/s41591-018-0255-8
doi: 10.1038/s41591-018-0255-8
pubmed: 30478423
Lv G, Sun X, Qiu L, Sun Y, Li K, Liu Q et al (2020) PET imaging of tumor PD-L1 expression with a highly specific nonblocking single-domain antibody. J Nucl Med 61(1):117–122. https://doi.org/10.2967/jnumed.119.226712
doi: 10.2967/jnumed.119.226712
pubmed: 31253743
pmcid: 6954462
Inman BA, Longo TA, Ramalingam S, Harrison MR (2017) Atezolizumab: a PD-L1-blocking antibody for bladder cancer. Clin Cancer Res 23(8):1886–1890. https://doi.org/10.1158/1078-0432.CCR-16-1417
doi: 10.1158/1078-0432.CCR-16-1417
pubmed: 27903674
Seetharamu N, Preeshagul IR, Sullivan KM (2017) New PD-L1 inhibitors in non-small cell lung cancer-impact of atezolizumab. Lung Cancer 8:67–78. https://doi.org/10.2147/LCTT.S113177
doi: 10.2147/LCTT.S113177
pubmed: 28761384
pmcid: 5516873
Vento J, Mulgaonkar A, Woolford L, Nham K, Christie A, Bagrodia A et al (2019) PD-L1 detection using (89)Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response. J Immunother Cancer. 7(1):144. https://doi.org/10.1186/s40425-019-0607-z
doi: 10.1186/s40425-019-0607-z
pubmed: 31155004
pmcid: 6545669
De Silva RA, Kumar D, Lisok A, Chatterjee S, Wharram B, Venkateswara Rao K et al (2018) Peptide-based (68)Ga-PET radiotracer for imaging PD-L1 expression in cancer. Mol Pharm 15(9):3946–3952. https://doi.org/10.1021/acs.molpharmaceut.8b00399
doi: 10.1021/acs.molpharmaceut.8b00399
pubmed: 30037229
pmcid: 6127800
Kumar D, Lisok A, Dahmane E, McCoy M, Shelake S, Chatterjee S et al (2019) Peptide-based PET quantifies target engagement of PD-L1 therapeutics. J Clin Invest. 129(2):616–630. https://doi.org/10.1172/JCI122216
doi: 10.1172/JCI122216
pubmed: 30457978
pmcid: 6355241
Hu K, Kuan H, Hanyu M, Masayuki H, Xie L, Zhang Y et al (2019) Developing native peptide-based radiotracers for PD-L1 PET imaging and improving imaging contrast by pegylation. Chem Commun 55(29):4162–4165. https://doi.org/10.1039/c9cc00445a
doi: 10.1039/c9cc00445a
Pilotto S, Molina-Vila MA, Karachaliou N, Carbognin L, Viteri S, Gonzalez-Cao M et al (2015) Integrating the molecular background of targeted therapy and immunotherapy in lung cancer: a way to explore the impact of mutational landscape on tumor immunogenicity. Transl Lung Cancer Res. 4(6):721–727. https://doi.org/10.3978/j.issn.2218-6751.2015.10.11
doi: 10.3978/j.issn.2218-6751.2015.10.11
pubmed: 26798581
pmcid: 4700230
Ehlerding EB, Lee HJ, Barnhart TE, Jiang D, Kang L, McNeel DG et al (2019) Noninvasive imaging and quantification of radiotherapy-induced PD-L1 upregulation with (89)Zr-Df-Atezolizumab. Bioconjug Chem 30(5):1434–1441. https://doi.org/10.1021/acs.bioconjchem.9b00178
doi: 10.1021/acs.bioconjchem.9b00178
pubmed: 30973703
pmcid: 6521689
Mok TSK, Wu Y-L, Kudaba I, Kowalski DM, Cho BC, Turna HZ et al (2019) Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 393(10183):1819–1830. https://doi.org/10.1016/s0140-6736(18)32409-7
doi: 10.1016/s0140-6736(18)32409-7
pubmed: 30955977
Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A et al (2019) Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol 37(7):537–546
doi: 10.1200/JCO.18.00149
pubmed: 30620668
Yan F, Pang J, Peng Y, Molina JR, Yang P, Liu S (2016) Elevated cellular PD1/PD-L1 expression confers acquired resistance to cisplatin in small cell lung cancer cells. PLoS ONE 11(9):e0162925. https://doi.org/10.1371/journal.pone.0162925
doi: 10.1371/journal.pone.0162925
pubmed: 27610620
pmcid: 5017656
Wangpaichitr M, Kandemir H, Li YY, Wu C, Nguyen D, Feun LG et al (2017) Relationship of Metabolic Alterations and PD-L1 Expression in Cisplatin Resistant Lung Cancer. Cell Dev Biol. 6(2):183. https://doi.org/10.4172/2168-9296.1000183
doi: 10.4172/2168-9296.1000183
pubmed: 28819582
pmcid: 5557290
Fournel L, Wu Z, Stadler N, Damotte D, Lococo F, Boulle G et al (2019) Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer. Cancer Lett 464:5–14. https://doi.org/10.1016/j.canlet.2019.08.005
doi: 10.1016/j.canlet.2019.08.005
pubmed: 31404614
Chen R, Zhou X, Liu J, Huang G (2019) Relationship between the expression of PD-1/PD-L1 and (18)F-FDG uptake in bladder cancer. Eur J Nucl Med Mol Imaging. 46(4):848–854. https://doi.org/10.1007/s00259-018-4208-8
doi: 10.1007/s00259-018-4208-8
pubmed: 30627815
Jreige M, Letovanec I, Chaba K, Renaud S, Rusakiewicz S, Cristina V et al (2019) (18)F-FDG PET metabolic-to-morphological volume ratio predicts PD-L1 tumour expression and response to PD-1 blockade in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 46(9):1859–1868. https://doi.org/10.1007/s00259-019-04348-x
doi: 10.1007/s00259-019-04348-x
pubmed: 31214790
Ehlerding EB, Lan X, Cai W (2019) Predicting PD-1/PD-L1 status in bladder cancer with (18)F-FDG PET? Eur J Nucl Med Mol Imaging. 46(4):791–793. https://doi.org/10.1007/s00259-018-4224-8
doi: 10.1007/s00259-018-4224-8
pubmed: 30536016
Wang X, Huang S, Zhang Y, Zhu L, Wu X (2018) The application and mechanism of PD pathway blockade for cancer therapy. Postgrad Med J 94(1107):53–60. https://doi.org/10.1136/postgradmedj-2017-135187
doi: 10.1136/postgradmedj-2017-135187
pubmed: 28942432
Chen L, Han X (2015) Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest. 125(9):3384–3391. https://doi.org/10.1172/JCI80011
doi: 10.1172/JCI80011
pubmed: 26325035
pmcid: 4588282
Constantinidou A, Alifieris C, Trafalis DT (2019) Targeting programmed cell death -1 (PD-1) and ligand (PD-L1): a new era in cancer active immunotherapy. Pharmacol Ther 194:84–106. https://doi.org/10.1016/j.pharmthera.2018.09.008
doi: 10.1016/j.pharmthera.2018.09.008
pubmed: 30268773
Wang PF, Chen Y, Song SY, Wang TJ, Ji WJ, Li SW et al (2017) Immune-Related Adverse Events Associated with Anti-PD-1/PD-L1 Treatment for Malignancies: a Meta-Analysis. Front Pharmacol. 8:730. https://doi.org/10.3389/fphar.2017.00730
doi: 10.3389/fphar.2017.00730
pubmed: 29093678
pmcid: 5651530
Guo D, Li M, Chen D, Jing W, Zhu H, Fu L et al (2019) Neutrophil-to-lymphocyte ratio is superior to platelet-to-lymphocyte ratio as a prognostic predictor in advanced non-small-cell lung cancer treated with first-line platinum-based chemotherapy. Future Oncol. 15(6):625–635
doi: 10.2217/fon-2018-0667
pubmed: 30430864
Takada K, Toyokawa G, Okamoto T, Baba S, Kozuma Y, Matsubara T et al (2017) Metabolic characteristics of programmed cell death-ligand 1-expressing lung cancer on (18) F-fluorodeoxyglucose positron emission tomography/computed tomography. Cancer Med 6(11):2552–2561. https://doi.org/10.1002/cam4.1215
doi: 10.1002/cam4.1215
pubmed: 28980429
pmcid: 5673920