Characterization and engineering of two new GH9 and GH48 cellulases from a Bacillus pumilus isolated from Lake Bogoria.
Alkaliphilic
Bacillus pumilus
CBM
Cellobiohydrolase
Cellulose
Endoglucanase
Journal
Biotechnology letters
ISSN: 1573-6776
Titre abrégé: Biotechnol Lett
Pays: Netherlands
ID NLM: 8008051
Informations de publication
Date de publication:
Mar 2021
Mar 2021
Historique:
received:
30
09
2020
accepted:
10
12
2020
pubmed:
3
1
2021
medline:
21
10
2021
entrez:
2
1
2021
Statut:
ppublish
Résumé
To search for new alkaliphilic cellulases and to improve their efficiency on crystalline cellulose through molecular engineering RESULTS: Two novel cellulases, BpGH9 and BpGH48, from a Bacillus pumilus strain were identified, cloned and biochemically characterized. BpGH9 is a modular endocellulase belonging to the glycoside hydrolase 9 family (GH9), which contains a catalytic module (GH) and a carbohydrate-binding module belonging to class 3 and subclass c (CBM3c). This enzyme is extremely tolerant to high alkali pH and remains significantly active at pH 10. BpGH48 is an exocellulase, belonging to the glycoside hydrolase 48 family (GH48) and acts on the reducing end of oligo-β1,4 glucanes. A truncated form of BpGH9 and a chimeric fusion with an additional CBM3a module was constructed. The deletion of the CBM3c module results in a significant decline in the catalytic activity. However, fusion of CBM3a, although in a non native position, enhanced the activity of BpGH9 on crystalline cellulose. A new alkaliphilic endocellulase BpGH9, was cloned and engineered as a fusion protein (CBM3a-BpGH9), which led to an improved activity on crystalline cellulose.
Identifiants
pubmed: 33386499
doi: 10.1007/s10529-020-03056-z
pii: 10.1007/s10529-020-03056-z
doi:
Substances chimiques
Bacterial Proteins
0
Recombinant Fusion Proteins
0
Cellulose
9004-34-6
Cellulases
EC 3.2.1.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
691-700Références
Almagro Armenteros JJ, Tsirigos KD, Sønderby CK et al (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423
doi: 10.1038/s41587-019-0036-z
Bai W, Zhou C, Zhao Y, Wang Q, Ma Y, Permyakov EA (2015) Structural insight into and mutational analysis of family 11 xylanases: implications for mechanisms of higher pH catalytic adaptation. PLoS ONE 10:e0132834
doi: 10.1371/journal.pone.0132834
Bayer EA, Belaich J-P, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554
doi: 10.1146/annurev.micro.57.030502.091022
Brunecky R, Alahuhta M, Xu Q et al (2013) Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342:1513–1516
doi: 10.1126/science.1244273
Chiriac AI, Cadena EM, Vidal T, Torres AL, Diaz P, Javier Pastor FI (2010) Engineering a family 9 processive endoglucanase from Paenibacillus barcinonensis displaying a novel architecture. Appl Microbiol Biotechnol 86:1125–1134
doi: 10.1007/s00253-009-2350-8
Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2:541–551
doi: 10.1038/nrmicro925
Duckworth AW, Grant WD, Jones BE, Van Steenbergen R (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191
doi: 10.1111/j.1574-6941.1996.tb00211.x
Fontes CMGA, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79:655–681
doi: 10.1146/annurev-biochem-091208-085603
Gilad R, Rabinovich L, Yaron S et al (2003) CelI, a noncellulosomal family 9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. J Bacteriol 185:391–398
doi: 10.1128/JB.185.2.391-398.2003
Hashim SO, Delgado O, Hatti-Kaul R, Mulaa FJ, Mattiasson B (2004) Starch hydrolysing Bacillus halodurans isolates from a Kenyan soda lake. Biotechnol Lett 26:823–828
doi: 10.1023/B:BILE.0000025885.19910.d7
Jahangeer S, Khan N, Jahangeer S et al (2005) Screening and characterization of fungal cellulases isolated from the native environmental source. Pak J Bot 37:739
Kang Y, Shen M, Wang H, Zhao Q (2015) Complete genome sequence of Bacillus pumilus strain WP8, an efficient plant growth-promoting rhizobacterium. Genome Announc 3:e01452-e1514
doi: 10.1128/genomeA.01452-14
Kim S-J, Kim SH, Shin SK, Hyeon JE, Han SO (2016) Mutation of a conserved tryptophan residue in the CBM3c of a GH9 endoglucanase inhibits activity. Int J Biol Macromol 92:159–166
doi: 10.1016/j.ijbiomac.2016.06.091
Kipper K, Väljamäe P, Johansson G (2005) Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as “burst”kinetics on fluorescent polymeric model substrates. Biochem J 385:527–535
doi: 10.1042/BJ20041144
Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393
doi: 10.1002/anie.200460587
Lima AOS, Quecine MC, Fungaro MHP et al (2005) Molecular characterization of a β-1,4-endoglucanase from an endophytic Bacillus pumilus strain. Appl Microbiol Biotechnol 68:57–65
doi: 10.1007/s00253-004-1740-1
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495
doi: 10.1093/nar/gkt1178
Mandelman D, Belaich A, Belaich JP, Aghajari N, Driguez H, Haser R (2003) X-Ray crystal structure of the multidomain endoglucanase Cel9G from Clostridium cellulolyticum complexed with natural and synthetic cello-oligosaccharides. J Bacteriol 185:4127–4135
doi: 10.1128/JB.185.14.4127-4135.2003
Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428
doi: 10.1021/ac60147a030
Moallic C, Dabonné S, Colas B, Sine J-P (2006) Identification and characterization of a gamma-glutamyl transpeptidase from a thermo-alcalophile strain of Bacillus pumilus. Protein J 25:391–397
doi: 10.1007/s10930-006-9025-4
Mwirichia R, Muigai AW, Tindall B, Boga HI, Stackebrandt E (2010) Isolation and characterisation of bacteria from the haloalkaline Lake Elmenteita, Kenya. Extremophiles 14:339–348
doi: 10.1007/s00792-010-0311-x
Petkun S, Rozman Grinberg I, Lamed R et al (2015) Reassembly and co-crystallization of a family 9 processive endoglucanase from its component parts: structural and functional significance of the intermodular linker. PeerJ 3:e1126
doi: 10.7717/peerj.1126
Stern J, Kahn A, Vazana Y et al (2015) Significance of relative position of cellulases in designer cellulosomes for optimized cellulolysis. PLoS ONE 10:e0127326
doi: 10.1371/journal.pone.0127326
Taylor MP, van Zyl L, Tuffin M, Cowan D (2012) Extremophiles and biotechnology: how far have we come? In: Anitori RP (ed) Extremophiles: microbiology and biotechnology. Horizon Scientific Press, Hethersett, pp 1–24
Uchiyama T, Uchihashi T, Nakamura A, Watanabe H, Kaneko D, Samejima M, Igarashi K (2020) Convergent evolution of processivity in bacterial and fungal cellulases. Proc Natl Acad Sci 117:19896–19903
doi: 10.1073/pnas.2011366117
Vargas VA, Delgado OD, Hatti-Kaul R, Mattiasson B (2004) Lipase-producing microorganisms from a Kenyan alkaline soda lake. Biotechnol Lett 26:81–86
doi: 10.1023/B:BILE.0000012898.50608.12
Walker JA, Takasuka TE, Deng K et al (2015) Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules. Biotechnol Biofuels 8:220
doi: 10.1186/s13068-015-0402-0
Zhang X-Z, Zhang Y-HP (2013) Cellulases: characteristics, sources, production, and applications. Bioprocess Technol Biorefinery Sustain Prod Fuels Chem Polym 1:131–146
Zhao Y, Zhang Y, Cao Y et al (2011) Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16–5: implications for adaptation to alkaline conditions. PLoS ONE 6:e14608
doi: 10.1371/journal.pone.0014608