Variability of fitting parameters across cochlear implant centres.
Journal
European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
ISSN: 1434-4726
Titre abrégé: Eur Arch Otorhinolaryngol
Pays: Germany
ID NLM: 9002937
Informations de publication
Date de publication:
Dec 2021
Dec 2021
Historique:
received:
30
07
2020
accepted:
12
12
2020
pubmed:
4
1
2021
medline:
3
11
2021
entrez:
3
1
2021
Statut:
ppublish
Résumé
As a follow-up to the studies by Vaerenberg et al. (Sci World J 501738:1-12, 2014) and Browning et al. (Cochlear Implant Int 21(3):1-13, 2020), who used questionnaires, we determined whether there are between-centre variations in the fitting of cochlear implants by analysing the methodology, fitting parameters and hearing results of patients from four centres with real data. The purpose of this study is to highlight the lack of streamlined mapping guides and outcome measures with respect to cochlear implant (CI) fittings. A retrospective study with ninety-seven post-lingual adults with a nucleus cochlear implant placed between 2003 and 2013 was included to ensure at least 5 years of follow-up. The studied data were as follows: the methodology, including the fitter's professional background, the method of activation, the sequence of fitting sessions, the objectives measures and hearing outcomes; and the fitting parameters, including the speech processors, programming strategy, stimulation mode, T and C levels, T-SPL and C-SPL, maxima, pulse width, loudness growth and hearing results. This investigation highlights some common practices across professionals and CI centres: the activation of a CI is behavioural; impedances are systematically measured at each fitting; and some parameters are rarely modified. However, there are also differences, either between centres, such as the sequences of fitting sessions (p < 0.05) or their approach to spectral bands (p < 0.05), or even within centres, such as the policy regarding T and C levels at high frequencies compared to those at low and mid-frequencies. There are important variations between and within centres that reflect a lack of CI-related policies and outcome measures in the fitting of CI. NCT03700268.
Identifiants
pubmed: 33388985
doi: 10.1007/s00405-020-06572-w
pii: 10.1007/s00405-020-06572-w
doi:
Banques de données
ClinicalTrials.gov
['NCT03700268']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4671-4679Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.
Références
Tokita J, Dunn C, Hansen MR (2014) Cochlear implantation and single sided deafness. CurrOpinOtolaryngol Head Neck Surg 22(5):353–358
Ramos Macías A, Falcón González JC, Manrique M et al (2015) Cochlear implants as a treatment option for unilateral hearing loss severe tinnitus and hyperacusis. AudiolNeurotol 20(1):60–66
Servais J, Hörmann K, Wallhäusser-Franke E (2017) Unilateral cochlear implantation reduces tinnitus loudness in bimodal hearing: a prospective study. Front Neurol 7(8):60
Hughes ML (2013) Objective measures in cochlear implants. Plural Publishing, San Diego
Wolfe J, Schafer E (2015) Programming cochlear implants, 2nd edn. Plural Publishing, San Diego
Rader T, Doms P, Adel Y et al (2018) A method for determining precise electrical hearing thresholds in cochlear implant users. Int J Audiol 57(7):502–509
doi: 10.1080/14992027.2017.1412519
Fielden CA, Kitterick PT (2016) Contralateral acoustic hearing aid use in adult unilateral cochlear implant recipients : current provision, practice, and clinical experience in the UK. Cochlear Implants Int 17(3):132–145
doi: 10.1080/14670100.2016.1162382
Rossi-Katz J, Arehart KH (2011) Survey of audiological service provision to older adults with cochlear implants. Am J Audiol 20(2):84–89
doi: 10.1044/1059-0889(2011/10-0044)
Vaerenberg B, Smits C, De Ceulaer G et al (2014) Cochlear implant programming: a global survey on the state of the art. Sci World J 501738:1–12
Siburt HW, Holmes AE (2015) Bimodal programming: a survey of current clinical practice. Am J Audiol 24(2):243–249
doi: 10.1044/2015_AJA-14-0069
Browning LM, Nie Y, Rout A, Heiner M (2020) Audiologists’s preferences in programming cochlear implants: a preliminary report. Cochlear Implants Int 21(3):1–13
Battmer RD, Borel S, Brendel M et al (2014) Assessment of “Fitting to Outcomes Expert” FOX
doi: 10.1179/1754762814Y.0000000093
Skinner MW, Holden LK, Holden TA et al (1995) Comparison of procedures for obtaining thresholds and maximum acceptable loudness levels with the nucleus cochlear implant system. J Speech Hear Res 38(3):677–689
doi: 10.1044/jshr.3803.677
Botros A, Psarros C (2010) Neural response telemetry reconsidered: I The relevance of ECAP threshold profiles and scaled profiles to cochlear implant fitting. Ear Hear 31(3):367–379
doi: 10.1097/AUD.0b013e3181c9fd86
Carvalho B, Hamerschmidt R, Wiemes G (2015) Intraoperative neural response telemetry and neural recovery function: a comparative study between adults and children. Int Arch Otorhinolaryngol 19(1):10–15
pubmed: 25992145
Greisiger R, Shallop JK, Hol PK et al (2015) Cochlear implantees: Analysis of behavioral and objective measures for a clinical population of various age groups. Cochlear Implants Int 16(4):1–19
doi: 10.1080/14670100.2015.1110372
Stephan K, Welzl-Müller K (2000) Post-operative stapedius reflex tests with simultaneous loudness scaling in patients supplied with cochlear implants. Audiology 39(1):13–18
doi: 10.3109/00206090009073049
Philippon D, Bergeron FF, Ferron P et al (2010) Cochlear Implantation in postmeningitic deafness. OtolNeurotol 31(1):83–87
Cresson D (2016) Les fréquences dans l’audio, à quoi ça correspond?. https://blog.eavs-groupe.com/actualite-de-nos-metiers/frequences-laudio-ca-correspond-a-quoi/
Mewes A, Hey M (2017) Einfluss der T Level auf das Sprachverstehen in Ruhe und im Störschall bei erwachsenen CI-Patienten. Conference Paper, 20 Jahrestagung der Deutschen Gesellschaft fu¨ r Audiologie
Leone CA, Mosca F, Grassia R (2017) Temporal changes in impedance of implanted adults for various cochlear segments. ActaOtorhinolaryngol Ital 37:312–319
doi: 10.14639/0392-100X-1471
Chen JK, Chuang AY, Sprinzl GM et al (2013) Impedance and electrically evoked compound action potential (ECAP) drop within 24 hours after cochlear implantation. PLoS ONE 26(8):1–10
Chen JK, Chuang AY, Sprinzl GM et al (2015) Safety and feasibility of initial frequency mapping within 24 hours after cochlear implantation. Actaotolaryngol 135(6):592–599
Hagr A, GaradatAl-Momani SN et al (2015) Feasibility of one-day activation in cochlear implant recipients. Int J Audiol 54(5):323–331
doi: 10.3109/14992027.2014.996824
Sun CH, Chang CJ, Hsu CJ et al (2019) Feasibility of early activation after cochlear implantation. ClinOtolaryngol 44(6):1004–1010
Busby PA, Arora K (2016) Effects of threshold adjustment on speech perception in nucleus cochlear implant recipients. Ear Hear 37(3):303–311
doi: 10.1097/AUD.0000000000000248
Skinner MW, Holden LK, Holden TA et al (1999) Comparison of two methods for selecting minimum stimulation levels used in programming the Nucleus 22. Cochlear Implant J Speech Hear Res 42(4):814–828
doi: 10.1044/jslhr.4204.814
Firszt JB, Holden LK, Skinner MW et al (2004) Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear implant systems. Ear Hear 25(4):375–387
doi: 10.1097/01.AUD.0000134552.22205.EE
Holden LK, Reeder RM, Firszt JB et al (2011) Optimizing the perception of soft speech and speech in noise with the advanced bionics cochlear implant system. Int J Audiol 50(4):255–269
doi: 10.3109/14992027.2010.533200
Plesch J, Ernst BP, Strieth S et al (2019) A psychoacoustic application for the adjustment of electrical hearing thresholds in cochlear implant patients. PLoS ONE 14(10):1–17
doi: 10.1371/journal.pone.0223625
Govaerts PJ, Vaerenberg B, De Ceulaer G et al (2010) Development of a software tool using deterministic logic for the optimization of cochlear implant processor programming. OtolNeurotol 31(6):908–918
Vaerenberg B, Govaerts PJ, De Ceulaer G et al (2011) Experiences of the use of FOX, an intelligent agent, for programming cochlear implant sound processors in new users. Int J Audiol 50(1):50–58
doi: 10.3109/14992027.2010.531294
Bermejo I, Diez FJ, Govaerts PJ et al (2013) A probabilistic graphical model for tuning cochlear implants. In: Peek N, Marin Morales R, Peleg M (eds) Artificial intelligence in medicine. Springer, Berlin, pp 150–155
doi: 10.1007/978-3-642-38326-7_23
Wathour J, Teunen M, Pascoal D, Deggouj N, Govaerts PJ (2016) L’implant cochléaire avant l’âge d’un an : données quantitatives et qualitatives. Rééducation orthophonique no 268
Wathour J, Govaerts PJ, Deggouj N (2019) From manual to artificial intelligence fitting: two cochlear implant case studies. Cochlear Implants Int 17:1–7
Waltzman SB, Kelsall DC (2020) The use of artificial intelligence to program cochlear implant. OtolNeurotol 41(4):452–457
Meeuws M, Pascoal D, Janssens de Varebeke S, De Ceulaer G, Govaerts PJ (2020) Cochlear implant telemedicine: remote fitting based on psychoacoustic self-tests and artificial intelligence. Cochlear Implants Int 13:1–9
Lenarz T (2018) Cochlear implant: state of the art. GMS current topics in otorhinolaryngology. Head Neck Surg 16:1–29