Impact of paravertebral muscle in thoracolumbar and lower lumbar regions on outcomes following osteoporotic vertebral fracture: a multicenter cohort study.
Fat infiltration
New osteoporotic fracture
Paravertebral muscle
Remained low back pain
Journal
Archives of osteoporosis
ISSN: 1862-3514
Titre abrégé: Arch Osteoporos
Pays: England
ID NLM: 101318988
Informations de publication
Date de publication:
03 01 2021
03 01 2021
Historique:
received:
06
07
2020
accepted:
07
12
2020
entrez:
3
1
2021
pubmed:
4
1
2021
medline:
2
3
2021
Statut:
epublish
Résumé
We investigated the effect of paravertebral muscle (PVM) on poor prognosis in osteoporotic vertebral fracture (OVF) and remaining lower back pain (LBP) in the thoracolumbar and lower lumbar regions. Additional OVF occurrence in the thoracolumbar and remaining LBP in the lumbar region was significantly related to PVM fat infiltration percentage. Paravertebral muscle (PVM) is an important component of the spinal column. However, its role in the healing process after osteoporotic vertebral fracture (OVF) is unclear. This study aimed to clarify the effect of PVM in thoracolumbar and lower lumbar regions on OVF clinical and radiological outcomes. This was a multicenter prospective cohort study from 2012 to 2015. Patients ≥ 65 years old who presented within 2 weeks after fracture onset were followed up for 6 months. PVM was measured at the upper edge of the L1 and L5 vertebral body in the magnetic resonance imaging (MRI) T2-axial position at registration. The cross-sectional area (CSA), relative CSA (rCSA), and fat infiltration percentage (FI%) were measured. Severe vertebral compression, delayed union, new OVF, and remaining low back pain (LBP) were analyzed. Among 153 patients who were followed up for 6 months, 117 with measurable PVM were analyzed. Their average age was 79.1 ± 7.2 years, and 94 were women (80.3%). There were 48 cases of severe vertebral compression, 21 delayed unions, 11 new OVF, and 27 remaining LBP. Among all poor prognoses, only the FI% of the PVM was significantly associated with new OVF (p = 0.047) in the thoracolumbar region and remaining LBP (p = 0.042) in the lumbar region. The occurrence of additional OVF in the thoracolumbar region and remaining LBP in the lumbar region was significantly related to the FI% of the PVM. Physicians should be aware that patients with such fatty degeneration shown in acute MRI may require stronger treatment.
Identifiants
pubmed: 33389230
doi: 10.1007/s11657-020-00866-6
pii: 10.1007/s11657-020-00866-6
doi:
Types de publication
Journal Article
Multicenter Study
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2Références
Hebert JJ, Kjaer P, Fritz JM, Walker BF (2014) The relationship of lumbar multifidus muscle morphology to previous, current, and future low back pain: a 9-year population-based prospective cohort study. Spine (Phila Pa 1976) 39:1417–1425. https://doi.org/10.1097/BRS.0000000000000424
doi: 10.1097/BRS.0000000000000424
Yagi M, Hosogane N, Watanabe K, Asazuma T, Matsumoto M, Keio Spine Research Group (2016) The paravertebral muscle and psoas for the maintenance of global spinal alignment in patient with degenerative lumbar scoliosis. Spine J 16:451–458. https://doi.org/10.1016/j.spinee.2015.07.001
doi: 10.1016/j.spinee.2015.07.001
pubmed: 26165478
Digirolamo DJ, Kiel DP, Esser KA (2013) Bone and skeletal muscle: neighbors with close ties. J Bone Miner Res 28:1509–1518. https://doi.org/10.1002/jbmr.1969
doi: 10.1002/jbmr.1969
pubmed: 23630111
Kim JY, Chae SU, Kim GD, Cha MS (2013) Changes of paraspinal muscles in postmenopausal osteoporotic spinal compression fractures: magnetic resonance imaging study. 75–81
Choi MK, Kim SB, Park CK, Malla HP, Kim SM (2017) Cross-sectional area of the lumbar spine trunk muscle and posterior lumbar interbody fusion rate: a retrospective study. Clin Spine Surg 30:E798–E803. https://doi.org/10.1097/BSD.0000000000000424
doi: 10.1097/BSD.0000000000000424
pubmed: 27623301
Larsson L, Degens H, Li M, Salviati L, Lee Y, Thompson W, Kirkland JL, Sandri M (2019) Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev 99:427–511. https://doi.org/10.1152/physrev.00061.2017
doi: 10.1152/physrev.00061.2017
pubmed: 30427277
Hori Y, Hoshino M, Inage K, Miyagi M, Takahashi S, Ohyama S, Suzuki A, Tsujio T, Terai H, Dohzono S, Sasaoka R, Toyoda H, Kato M, Matsumura A, Namikawa T, Seki M, Yamada K, Habibi H, Salimi H, Yamashita M, Yamauchi T, Furuya T, Orita S, Maki S, Shiga Y, Inoue M, Inoue G, Fujimaki H, Murata K, Kawakubo A, Kabata D, Shintani A, Ohtori S, Takaso M, Nakamura H (2019) ISSLS PRIZE IN CLINICAL SCIENCE 2019: clinical importance of trunk muscle mass for low back pain, spinal balance, and quality of life—a multicenter cross-sectional study. Eur Spine J 28:914–921. https://doi.org/10.1007/s00586-019-05904-7
doi: 10.1007/s00586-019-05904-7
pubmed: 30729293
Teichtahl AJ, Urquhart DM, Wang Y, Wluka AE, Wijethilake P, O'Sullivan R, Cicuttini FM (2015) Fat infiltration of paraspinal muscles is associated with low back pain, disability, and structural abnormalities in community-based adults. Spine J 15:1593–1601. https://doi.org/10.1016/j.spinee.2015.03.039
doi: 10.1016/j.spinee.2015.03.039
pubmed: 25828477
Johnell O, Kanis J (2005) Epidemiology of osteoporotic fractures. In: Osteoporosis International. Springer, pp S3–S7
Statistics Bureau Home Page. http://www.stat.go.jp/english/ . Accessed 6 Apr 2020
Pfirrmann CWA, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26:1873–1878. https://doi.org/10.1097/00007632-200109010-00011
doi: 10.1097/00007632-200109010-00011
Chen P, Krege JH, Adachi JD, Prior JC, Tenenhouse A, Brown JP, Papadimitropoulos E, Kreiger N, Olszynski WP, Josse RG, Goltzman D, the CaMOS Research Group (2009) Vertebral fracture status and the World Health Organization risk factors for predicting osteoporotic fracture risk. J Bone Miner Res 24:495–502. https://doi.org/10.1359/jbmr.081103
doi: 10.1359/jbmr.081103
pubmed: 19016585
Huang C (1996) Vertebral fracture and other predictors of physical impairment and health care utilization. Arch Intern Med 156:2469–2475. https://doi.org/10.1001/archinte.1996.00440200087011
doi: 10.1001/archinte.1996.00440200087011
pubmed: 8944740
Kado DM (1999) Vertebral fractures and mortality in older women. Arch Intern Med 159:1215–1220
doi: 10.1001/archinte.159.11.1215
Tsai AG, Bessesen DH (2019) Annals of internal medicine. Ann Intern Med 170:ITC33–ITC48. https://doi.org/10.7326/AITC201903050
doi: 10.7326/AITC201903050
pubmed: 30831593
Oner FC, Van Gils APG, Dhert WJA, Verbout AJ (1999) MRI findings of thoracolumbar spine fractures: a categorisation based on MRI examinations of 100 fractures. Skeletal Radiol 28:433–443. https://doi.org/10.1007/s002560050542
doi: 10.1007/s002560050542
pubmed: 10486011
Cho T, Matsuda M, Sakurai M (1996) MRI findings on healing process of vertebral fracture in osteoporosis. J Orthop Sci 1:16–33. https://doi.org/10.1007/bf01234112
doi: 10.1007/bf01234112
Katsu M, Ohba T, Ebata S, Haro H (2018) Comparative study of the paraspinal muscles after OVF between the insufficient union and sufficient union using MRI. BMC Musculoskelet Disord 19:143. https://doi.org/10.1186/s12891-018-2064-0
doi: 10.1186/s12891-018-2064-0
pubmed: 29759081
pmcid: 5952377
Huang CWC, Tseng IJ, Yang SW, Lin YK, Chan WP (2019) Lumbar muscle volume in postmenopausal women with osteoporotic compression fractures: quantitative measurement using MRI. Eur Radiol 29:4999–5006. https://doi.org/10.1007/s00330-019-06034-w
doi: 10.1007/s00330-019-06034-w
pubmed: 30847590
Briggs AM, Greig AM, Bennell KL, Hodges PW (2007) Paraspinal muscle control in people with osteoporotic vertebral fracture. Eur Spine J 16:1137–1144. https://doi.org/10.1007/s00586-006-0276-8
doi: 10.1007/s00586-006-0276-8
pubmed: 17203276
pmcid: 2200788
Cunha-Henriques S (2011) Postmenopausal women with osteoporosis and musculoskeletal status: a comparative cross-sectional study. J Clin Med Res. https://doi.org/10.4021/jocmr537w
Sinaki M, Khosla S, Limburg PJ, Rogers JW, Murtaugh PA (1993) Muscle strength in osteoporotic versus normal women. Osteoporos Int 3:8–12. https://doi.org/10.1007/BF01623170
doi: 10.1007/BF01623170
pubmed: 8422518
Takahashi S, Hoshino M, Takayama K, Sasaoka R, Tsujio T, Yasuda H, Kanematsu F, Kono H, Toyoda H, Ohyama S, Hori Y, Nakamura H (2020) The natural course of the paravertebral muscles after the onset of osteoporotic vertebral fracture. Osteoporos Int 31:1089–1095. https://doi.org/10.1007/s00198-020-05338-8
doi: 10.1007/s00198-020-05338-8
pubmed: 32060561
Takahashi S, Hoshino M, Takayama K, Iseki K, Sasaoka R, Tsujio T, Yasuda H, Sasaki T, Kanematsu F, Kono H, Toyoda H, Nakamura H (2017) Time course of osteoporotic vertebral fractures by magnetic resonance imaging using a simple classification: a multicenter prospective cohort study. Osteoporos Int 28:473–482. https://doi.org/10.1007/s00198-016-3737-x
doi: 10.1007/s00198-016-3737-x
pubmed: 27577726
Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148. https://doi.org/10.1002/jbmr.5650080915
doi: 10.1002/jbmr.5650080915
Engelke K, Museyko O, Wang L, Laredo JD (2018) Quantitative analysis of skeletal muscle by computed tomography imaging—state of the art. J Orthop Transl 15:91–103. https://doi.org/10.1016/j.jot.2018.10.004
doi: 10.1016/j.jot.2018.10.004
Hu ZJ, He J, Zhao FD, Fang XQ, Zhou LN, Fan SW (2011) An assessment of the intra- and inter-reliability of the lumbar paraspinal muscle parameters using CT scan and magnetic resonance imaging. Spine (Phila Pa 1976) 36:868–874. https://doi.org/10.1097/BRS.0b013e3181ef6b51
doi: 10.1097/BRS.0b013e3181ef6b51
Takahashi S, Hoshino M, Takayama K, Iseki K, Sasaoka R, Tsujio T, Yasuda H, Sasaki T, Kanematsu F, Kono H, Toyoda H, Nakamura H (2016) Predicting delayed union in osteoporotic vertebral fractures with consecutive magnetic resonance imaging in the acute phase: a multicenter cohort study. Osteoporos Int 27:3567–3575. https://doi.org/10.1007/s00198-016-3687-3
doi: 10.1007/s00198-016-3687-3
pubmed: 27344644
Shahidi B, Parra CL, Berry DB, Hubbard JC, Gombatto S, Zlomislic V, Allen RT, Hughes-Austin J, Garfin S, Ward SR (2017) Contribution of lumbar spine pathology and age to paraspinal muscle size and fatty infiltration. Spine (Phila Pa 1976) 42:616–623. https://doi.org/10.1097/BRS.0000000000001848
doi: 10.1097/BRS.0000000000001848
Muratore M, Ferrera A, Masse A, Bistolfi A (2018) Osteoporotic vertebral fractures: predictive factors for conservative treatment failure. A systematic review. Eur Spine J 27:2565–2576
doi: 10.1007/s00586-017-5340-z
Kim HJ, Yi JM, Cho HG, Chang BS, Lee CK, Kim JH, Yeom JS (2014) Comparative study of the treatment outcomes of osteoporotic compression fractures without neurologic injury using a rigid brace, a soft brace, and no brace: a prospective randomized controlled non-inferiority trial. J Bone Jt Surg - Am Vol 96:1959–1966. https://doi.org/10.2106/JBJS.N.00187
doi: 10.2106/JBJS.N.00187
Hoshino M, Tsujio T, Terai H, Namikawa T, Kato M, Matsumura A, Suzuki A, Takayama K, Takaoka K, Nakamura H (2013) Impact of initial conservative treatment interventions on the outcomes of patients with osteoporotic vertebral fractures. Spine (Phila Pa 1976) 38:E641–E648. https://doi.org/10.1097/BRS.0b013e31828ced9d
doi: 10.1097/BRS.0b013e31828ced9d
Rathore M, Sinha MB, Trivedi S, Sharma DK (2014) A focused review – thoracolumbar spine : Anatomy , Biomechanics and Clinical Significance. Indian J Clin Anat Physiol 1:41–46
Harrison DE, Colloca CJ, Harrison DD, Janik TJ, Haas JW, Keller TS (2005) Anterior thoracic posture increases thoracolumbar disc loading. Eur Spine J 14:234–242. https://doi.org/10.1007/s00586-004-0734-0
doi: 10.1007/s00586-004-0734-0
pubmed: 15168237
Paalanne N, Niinimäki J, Karppinen J, Taimela S, Mutanen P, Takatalo J, Korpelainen R, Tervonen O (2011) Assessment of association between low back pain and paraspinal muscle atrophy using opposed-phase magnetic resonance imaging: a population-based study among young adults. Spine (Phila Pa 1976) 36:1961–1968. https://doi.org/10.1097/BRS.0b013e3181fef890
doi: 10.1097/BRS.0b013e3181fef890
Cutts A, Alexander RM, Ker RF (1991) Ratios of cross-sectional areas of muscles and their tendons in a healthy human forearm. J Anat 176:133–137
pubmed: 1917668
pmcid: 1260320
Hansen L, de Zee M, Rasmussen J, Andersen TB, Wong C, Simonsen EB (2006) Anatomy and biomechanics of the back muscles in the lumbar spine with reference to biomechanical modeling. Spine (Phila Pa 1976) 31:1888–1899. https://doi.org/10.1097/01.brs.0000229232.66090.58
doi: 10.1097/01.brs.0000229232.66090.58
Kalimo H, Rantanen J, Viljanen T, Einola S (1989) Lumbar muscles: structure and function. Ann Med 21:353–359. https://doi.org/10.3109/07853898909149220
doi: 10.3109/07853898909149220
pubmed: 2532525
Pogrund H, Bloom RA, Weinberg H, et al (2009) Relationship of psoas width to osteoporosis. 6470:8–11. https://doi.org/10.3109/17453678608994377