Invasive pulmonary aspergillosis caused by Aspergillus terreus diagnosed using virtual bronchoscopic navigation and endobronchial ultrasonography with guide sheath and successfully treated with liposomal amphotericin B.
Aspergillus terreus
Bronchoscopy
EBUS-GS
Invasive pulmonary aspergillosis
Liposomal amphotericin B
Journal
Infection
ISSN: 1439-0973
Titre abrégé: Infection
Pays: Germany
ID NLM: 0365307
Informations de publication
Date de publication:
Oct 2021
Oct 2021
Historique:
received:
10
09
2020
accepted:
27
10
2020
pubmed:
4
1
2021
medline:
26
11
2021
entrez:
3
1
2021
Statut:
ppublish
Résumé
Invasive aspergillosis is a significant cause of mortality in patients with hematological malignancy. Early diagnosis of invasive pulmonary aspergillosis (IPA) by bronchoscopy is recommended but is often difficult to perform because of small lesion size and bleeding risk due to thrombocytopenia. A 71-year-old woman had received initial induction therapy for acute myeloid leukemia. On day 22 of chemotherapy, she had a high fever, and the chest computed tomography scan revealed a 20-mm-sized nodule with a halo sign. Bronchoscopy assisted by virtual bronchoscopic navigation (VBN) and endobronchial ultrasonography with a guide sheath (EBUS-GS) was performed, and Aspergillus terreus was identified from the culture of obtained specimens. A. terreus is often resistant to amphotericin B; thus, voriconazole is usually recommended for treatment. However, the obtained A. terreus isolate showed minimal inhibitory concentrations of 2 µg/mL for voriconazole and 0.5 µg/mL for amphotericin B. Therefore, the patient was successfully treated with liposomal amphotericin B. For patients suspected of having IPA, early diagnosis and drug susceptibility testing are very important. This case suggests that bronchoscopy using VBN and EBUS-GS is helpful for accurate diagnosis and successful treatment even if the lesion is small and the patient has a bleeding risk.
Identifiants
pubmed: 33389698
doi: 10.1007/s15010-020-01545-x
pii: 10.1007/s15010-020-01545-x
doi:
Substances chimiques
Antifungal Agents
0
liposomal amphotericin B
0
Amphotericin B
7XU7A7DROE
Types de publication
Case Reports
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1049-1054Informations de copyright
© 2021. Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Segal BH. Aspergillosis. N Engl J Med. 2009;360:1870–84.
doi: 10.1056/NEJMra0808853
Greene RE, Schlamm HT, Oestmann JW, Stark P, Durand C, Lortholary O, et al. Imaging findings in acute invasive pulmonary aspergillosis: clinical significance of the halo sign. Clin Infect Dis. 2007;44:373–9.
doi: 10.1086/509917
Patterson TF, Thompson GR 3rd, Denning DW, Fishman JA, Hadley S, Herbrecht R, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;63:e1–60.
doi: 10.1093/cid/ciw326
Morgan J, Wannemuehler KA, Marr KA, Hadley S, Kontoyiannis DP, Walsh TJ, et al. Incidence of invasive aspergillosis following hematopoietic stem cell and solid organ transplantation: interim results of a prospective multicenter surveillance program. Med Mycol. 2005;43:S49–58.
doi: 10.1080/13693780400020113
Perfect JR, Cox GM, Lee JY, Kauffman CA, de Repentigny L, Chapman SW, et al. The impact of culture isolation of Aspergillus species: a hospital-based survey of aspergillosis. Clin Infect Dis. 2001;33:1824–33.
doi: 10.1086/323900
Hachem R, Gomes MZ, El HelouEl ZakhemKassis GAC, Ramos E, et al. Invasive aspergillosis caused by Aspergillus terreus: an emerging opportunistic infection with poor outcome independent of azole therapy. J Antimicrob Chemother. 2014;69:3148–55.
doi: 10.1093/jac/dku241
Clinical and Laboratory and Standards Institute. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard. 2nd ed. Wayne: Clinical and Laboratory and Standards Institute; 2008.
The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs for antifungal agents, version 10.0. 2020. https://eucast.org/astoffungi/clinicalbreakpointsforantifungals/ . Accessed on 7 Aug 2020.
Won EJ, Choi MJ, Shin JH, Park YJ, Byun SA, Jung JS, et al. Diversity of clinical isolates of Aspergillus terreus in antifungal susceptibilities, genotypes and virulence in Galleria mellonella model: comparison between respiratory and ear isolates. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0186086 .
doi: 10.1371/journal.pone.0186086
pubmed: 29232410
pmcid: 5726740
Risslegger B, Zoran T, Lackner M, Aigner M, Sánchez-Reus F, Rezusta A, et al. A prospective international Aspergillus terreus survey: an EFISG, ISHAM and ECMM joint study. Clin Microbiol Infect. 2017;23:776.e1-776.e5.
doi: 10.1016/j.cmi.2017.04.012
Kathuria S, Sharma C, Singh PK, Agarwal P, Agarwal K, Hagen F, et al. Molecular epidemiology and in-vitro antifungal susceptibility of Aspergillus terreus species complex isolates in Delhi, India: evidence of genetic diversity by amplified fragment length polymorphism and microsatellite typing. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0118997 .
doi: 10.1371/journal.pone.0118997
pubmed: 25781896
pmcid: 4363790
Lass-Flörl C. Treatment of infections due to Aspergillus terreus species complex. J Fungi (Basel). 2018. https://doi.org/10.3390/jof4030083 .
doi: 10.3390/jof4030083
Blum G, Perkhofer S, Haas H, Schrettl M, Würzner R, Dierich MP, et al. Potential basis for amphotericin B resistance in Aspergillus terreus. Antimicrob Agents Chemother. 2008;52:1553–5.
doi: 10.1128/AAC.01280-07
Steinbach WJ, Benjamin DK Jr, Kontoyiannis DP, Perfect JR, Lutsar I, Marr KA, et al. Infections due to Aspergillus terreus: a multicenter retrospective analysis of 83 cases. Clin Infect Dis. 2004;39:192–8.
doi: 10.1086/421950
Fothergill AW. Antifungal susceptibility testing: Clinical Laboratory and Standards Institute (CLSI) methods. In: Hall GS, editor. Interactions of yeasts, moulds, and antifungal agents. 2012. Humana Press. p. 65–74.
Zoran T, Sartori B, Sappl L, Aigner M, Sánchez-Reus F, Rezusta A, et al. Azole-resistance in Aspergillus terreus and related species: an emerging problem or a rare phenomenon? Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.00516 .
doi: 10.3389/fmicb.2018.00516
pubmed: 30692970
pmcid: 5882871
Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, et al. In vitro susceptibility of clinical isolates of Aspergillus spp. to anidulafungin, caspofungin, and micafungin: a head-to-head comparison using the CLSIM38-A2 broth microdilution method. J Clin Microbiol. 2009;47:3323–5.
doi: 10.1128/JCM.01155-09
Shimoeda S, Ohta S, Kobayashi H, Yamato S, Sasaki M, Kawano K. Effective blood concentration of micafungin for pulmonary aspergillosis. Biol Pharm Bull. 2006;29:1886–91.
doi: 10.1248/bpb.29.1886
Hachem RY, Kontoyiannis DP, Chemaly RF, Jiang Y, Reitzel R, Raad I. Utility of galactomannan enzyme immunoassay and (1,3) beta-D-glucan in diagnosis of invasive fungal infections: low sensitivity for Aspergillus fumigatus infection in hematologic malignancy patients. J Clin Microbiol. 2009;47:129–33.
doi: 10.1128/JCM.00506-08
Ishida T, Asano F, Yamazaki K, Shinagawa N, Oizumi S, Moriya H, et al. Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: a randomised trial. Thorax. 2011;66:1072–7.
doi: 10.1136/thx.2010.145490
Lewis RE, Albert NP, Liao G, Wang W, Prince RA, Kontoyiannis DP. High-dose induction liposomal amphotericin B followed by de-escalation is effective in experimental Aspergillus terreus pneumonia. J Antimicrob Chemother. 2013;68:1148–51.
doi: 10.1093/jac/dks521