Genomic risk score provides predictive performance for type 2 diabetes in the UK biobank.


Journal

Acta diabetologica
ISSN: 1432-5233
Titre abrégé: Acta Diabetol
Pays: Germany
ID NLM: 9200299

Informations de publication

Date de publication:
Apr 2021
Historique:
received: 29 07 2020
accepted: 01 12 2020
pubmed: 5 1 2021
medline: 5 6 2021
entrez: 4 1 2021
Statut: ppublish

Résumé

Type 2 diabetes (T2D) is affected by a combination of genetic and environmental factors. However, the comprehensive genomic risk scores (GRSs) for T2D prediction have not been evaluated. Using a meta-scoring approach, we developed a metaGRS for T2D; T2D-related traits consist of 1,692 genetic variants in the UK Biobank training set (n = 40,423 + 7,558 events) and evaluate this score in the validation set (n = 303,053). The hazard ratio (HR) for T2D was 1.32 (95% confidence interval [CI]: 1.29-1.35) per standard deviation of metaGRS and was larger than previously published T2D-GRS. Individuals, in the top 25% of metaGRS, have an HR of 2.08 (95%CI: 1.93-2.23) compared with those in the bottom 25%. The addition of metaGRS to all conventional risk factors significantly increased the AUC (P < 0.001). Adding metaGRS to all conventional risk factors significantly improved the reclassification accuracy (continuous net reclassification improvement = 11.8%, 95%CI: 9.2%-14.2%). All analyses adjusted for age, sex, and 10PCs. The metaGRS significantly improves T2D prediction ability.

Identifiants

pubmed: 33392712
doi: 10.1007/s00592-020-01650-1
pii: 10.1007/s00592-020-01650-1
doi:

Types de publication

Journal Article Validation Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

467-474

Subventions

Organisme : National Key Research and Development Program
ID : 2020YFC2003500

Références

Guh DP, Zhang W, Bansback N et al (2009) The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9:88. https://doi.org/10.1186/1471-2458-9-88
doi: 10.1186/1471-2458-9-88 pubmed: 19320986 pmcid: 2667420
Mladovsky P, Allin S, Masseria C, Hernández-Quevedo C, Mossialos E (2009) Health in the European Union: trends and analysis. WHO Regional Office Europe, Denmark
Tuomilehto J, Lindström J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350. https://doi.org/10.1056/nejm200105033441801
doi: 10.1056/nejm200105033441801 pubmed: 11333990
Almgren P, Lehtovirta M, Isomaa B et al (2011) Heritability and familiarity of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 54:2811–2819. https://doi.org/10.1007/s00125-011-2267-5
doi: 10.1007/s00125-011-2267-5 pubmed: 21826484
Pal A, McCarthy MI (2013) The genetics of type 2 diabetes and its clinical relevance. Clin Genet 83:297–306. https://doi.org/10.1111/cge.12055
doi: 10.1111/cge.12055 pubmed: 23167659
Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990. https://doi.org/10.1038/ng.2383
doi: 10.1038/ng.2383 pubmed: 22885922 pmcid: 3442244
Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589. https://doi.org/10.1038/ng.609
doi: 10.1038/ng.609 pubmed: 20581827 pmcid: 3080658
Bonnefond A, Froguel P, Vaxillaire M (2010) The emerging genetics of type 2 diabetes. Trends Mol Med 16:407–416. https://doi.org/10.1016/j.molmed.2010.06.004
doi: 10.1016/j.molmed.2010.06.004 pubmed: 20728409
Khera AV, Chaffin M, Aragam KG et al (2018) Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 50:1219–1224. https://doi.org/10.1038/s41588-018-0183-z
doi: 10.1038/s41588-018-0183-z pubmed: 30104762 pmcid: 6128408
Vaxillaire M, Yengo L, Lobbens S et al (2014) Type 2 diabetes-related genetic risk scores associated with variations in fasting plasma glucose and development of impaired glucose homeostasis in the prospective DESIR study. Diabetologia 57:1601–1610. https://doi.org/10.1007/s00125-014-3277-x
doi: 10.1007/s00125-014-3277-x pubmed: 24893864
Abraham G, Malik R, Yonova-Doing E et al (2019) Genomic risk score offers predictive performance comparable to clinical risk factors for ischaemic stroke. Nat Commun 10:5819. https://doi.org/10.1038/s41467-019-13848-1
doi: 10.1038/s41467-019-13848-1 pubmed: 31862893 pmcid: 6925280
Ming D, Shafqat A, Lu Q et al (2019) Additive and multiplicative interactions between genetic risk score and family history and lifestyle in relation to risk of type 2 diabetes. Am J Epidemiol 189(5):445–460
Walford GA, Porneala BC, Dauriz M et al (2014) Metabolite traits and genetic risk provide complementary information for the prediction of future type 2 diabetes. Diabetes Care 37:2508–2514. https://doi.org/10.2337/dc14-0560
doi: 10.2337/dc14-0560 pubmed: 24947790 pmcid: 4140156
Qi Q, Li H, Wu Y et al (2010) Combined effects of 17 common genetic variants on type 2 diabetes risk in a Han Chinese population. Diabetologia 53:2163–2166. https://doi.org/10.1007/s00125-010-1826-5
doi: 10.1007/s00125-010-1826-5 pubmed: 20556352
Inouye M, Abraham G, Nelson CP et al (2018) Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention. J Am Coll Cardiol 72:1883–1893. https://doi.org/10.1016/j.jacc.2018.07.079
doi: 10.1016/j.jacc.2018.07.079 pubmed: 30309464 pmcid: 6176870
Sudlow C, Gallacher J, Allen N et al (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12:e1001779. https://doi.org/10.1371/journal.pmed.1001779
doi: 10.1371/journal.pmed.1001779 pubmed: 25826379 pmcid: 4380465
Bycroft C, Freeman C, Petkova D et al (2018) The UK Biobank resource with deep phenotyping and genomic data. Nature 562:203–209. https://doi.org/10.1038/s41586-018-0579-z
doi: 10.1038/s41586-018-0579-z pubmed: 30305743 pmcid: 6786975
Wheeler E, Leong A, Liu CT et al (2017) Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysis. PLoS Med 14:e1002383. https://doi.org/10.1371/journal.pmed.1002383
doi: 10.1371/journal.pmed.1002383 pubmed: 28898252 pmcid: 5595282
Scott RA, Lagou V, Welch RP et al (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44:991–1005. https://doi.org/10.1038/ng.2385
doi: 10.1038/ng.2385 pubmed: 22885924 pmcid: 3433394
Willer CJ, Schmidt EM, Sengupta S et al (2013) Discovery and refinement of loci associated with lipid levels. Nat Genet 45:1274–1283. https://doi.org/10.1038/ng.2797
doi: 10.1038/ng.2797 pubmed: 24097068 pmcid: 3838666
Evangelou E, Warren HR, Mosen-Ansorena D et al (2018) Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet 50:1412–1425. https://doi.org/10.1038/s41588-018-0205-x
doi: 10.1038/s41588-018-0205-x pubmed: 30224653 pmcid: 6284793
Shungin D, Winkler TW, Croteau-Chonka DC et al (2015) New genetic loci link adipose and insulin biology to body fat distribution. Nature 518:187–196. https://doi.org/10.1038/nature14132
doi: 10.1038/nature14132 pubmed: 25673412 pmcid: 4338562
Locke AE, Kahali B, Berndt SI et al (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518:197–206. https://doi.org/10.1038/nature14177
doi: 10.1038/nature14177 pubmed: 25673413 pmcid: 4382211
Wood AR, Esko T, Yang J et al (2014) Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet 46:1173–1186. https://doi.org/10.1038/ng.3097
doi: 10.1038/ng.3097 pubmed: 25282103 pmcid: 4250049
Liu M, Jiang Y, Wedow R et al (2019) Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet 51:237–244. https://doi.org/10.1038/s41588-018-0307-5
doi: 10.1038/s41588-018-0307-5 pubmed: 30643251 pmcid: 6358542
Chang CC, Chow CC, Tellier LC et al (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7. https://doi.org/10.1186/s13742-015-0047-8
doi: 10.1186/s13742-015-0047-8 pubmed: 25722852 pmcid: 4342193
Bycroft C, Freeman C, Petkova D et al (2017) Genome-wide genetic data on ~500,000 UK Biobank participants. BioRxiv. https://doi.org/10.1101/166298
doi: 10.1101/166298
Hui Z, Hastie T (2005) Regularization and variable selection via the elastic net. J Roy Stat Soc 67:301–320
doi: 10.1111/j.1467-9868.2005.00503.x
Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22
doi: 10.18637/jss.v033.i01
Fine J, Gray R, Jason P (1999) A proportional hazards model for the subdistribution of competing risks in survival analysis. J Am Stat Assoc 94(446):496–509
doi: 10.1080/01621459.1999.10474144
Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA (1982) Evaluating the yield of medical tests. JAMA 247:2543–2546
doi: 10.1001/jama.1982.03320430047030
Si S, Tewara MA, Ji X et al (2020) Body surface area, height, and body fat percentage as more sensitive risk factors of cancer and cardiovascular disease. Cancer Med 9:4433–4446. https://doi.org/10.1002/cam4.3076
doi: 10.1002/cam4.3076 pubmed: 32342643 pmcid: 7300397
Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172. https://doi.org/10.1002/sim.2929
doi: 10.1002/sim.2929 pubmed: 17569110
Imamura M, Shigemizu D, Tsunoda T et al (2013) Assessing the clinical utility of a genetic risk score constructed using 49 susceptibility alleles for type 2 diabetes in a Japanese population. J Clin Endocrinol Metab 98:E1667–E1673. https://doi.org/10.1210/jc.2013-1642
doi: 10.1210/jc.2013-1642 pubmed: 23956346
Ridker PM, Buring JE, Rifai N, Cook NR (2007) Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the reynolds risk score. JAMA 297:611–619. https://doi.org/10.1001/jama.297.6.611
doi: 10.1001/jama.297.6.611 pubmed: 17299196
Fry A, Littlejohns TJ, Sudlow C et al (2017) Comparison of sociodemographic and health-related characteristics of uk biobank participants with those of the general population. Am J Epidemiol 186:1026–1034. https://doi.org/10.1093/aje/kwx246
doi: 10.1093/aje/kwx246 pubmed: 28641372 pmcid: 5860371

Auteurs

Xiaolu Chen (X)

Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, 250012, People's Republic of China.

Congcong Liu (C)

Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, 250012, People's Republic of China.

Shucheng Si (S)

Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, 250012, People's Republic of China.

Yunxia Li (Y)

Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, 250012, People's Republic of China.

Wenchao Li (W)

Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, 250012, People's Republic of China.

Tonghui Yuan (T)

Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, 250012, People's Republic of China.

Fuzhong Xue (F)

Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, 250012, People's Republic of China. xuefzh@sdu.edu.cn.
Institute for Medical Dataology, Shandong University, No.12550 Erhuandong Road, Jinan, 250002, People's Republic of China. xuefzh@sdu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH