Genomic risk score provides predictive performance for type 2 diabetes in the UK biobank.
Adult
Aged
Biological Specimen Banks
/ statistics & numerical data
Diabetes Mellitus, Type 2
/ diagnosis
Early Diagnosis
Female
Genetic Predisposition to Disease
Genome-Wide Association Study
/ methods
Genomics
/ methods
Humans
Male
Middle Aged
Predictive Value of Tests
Proportional Hazards Models
Risk Factors
United Kingdom
/ epidemiology
Competing risk model
Genomic risk scores
Net reclassification improvement
Risk factors
Type 2 diabetes
Journal
Acta diabetologica
ISSN: 1432-5233
Titre abrégé: Acta Diabetol
Pays: Germany
ID NLM: 9200299
Informations de publication
Date de publication:
Apr 2021
Apr 2021
Historique:
received:
29
07
2020
accepted:
01
12
2020
pubmed:
5
1
2021
medline:
5
6
2021
entrez:
4
1
2021
Statut:
ppublish
Résumé
Type 2 diabetes (T2D) is affected by a combination of genetic and environmental factors. However, the comprehensive genomic risk scores (GRSs) for T2D prediction have not been evaluated. Using a meta-scoring approach, we developed a metaGRS for T2D; T2D-related traits consist of 1,692 genetic variants in the UK Biobank training set (n = 40,423 + 7,558 events) and evaluate this score in the validation set (n = 303,053). The hazard ratio (HR) for T2D was 1.32 (95% confidence interval [CI]: 1.29-1.35) per standard deviation of metaGRS and was larger than previously published T2D-GRS. Individuals, in the top 25% of metaGRS, have an HR of 2.08 (95%CI: 1.93-2.23) compared with those in the bottom 25%. The addition of metaGRS to all conventional risk factors significantly increased the AUC (P < 0.001). Adding metaGRS to all conventional risk factors significantly improved the reclassification accuracy (continuous net reclassification improvement = 11.8%, 95%CI: 9.2%-14.2%). All analyses adjusted for age, sex, and 10PCs. The metaGRS significantly improves T2D prediction ability.
Identifiants
pubmed: 33392712
doi: 10.1007/s00592-020-01650-1
pii: 10.1007/s00592-020-01650-1
doi:
Types de publication
Journal Article
Validation Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
467-474Subventions
Organisme : National Key Research and Development Program
ID : 2020YFC2003500
Références
Guh DP, Zhang W, Bansback N et al (2009) The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9:88. https://doi.org/10.1186/1471-2458-9-88
doi: 10.1186/1471-2458-9-88
pubmed: 19320986
pmcid: 2667420
Mladovsky P, Allin S, Masseria C, Hernández-Quevedo C, Mossialos E (2009) Health in the European Union: trends and analysis. WHO Regional Office Europe, Denmark
Tuomilehto J, Lindström J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350. https://doi.org/10.1056/nejm200105033441801
doi: 10.1056/nejm200105033441801
pubmed: 11333990
Almgren P, Lehtovirta M, Isomaa B et al (2011) Heritability and familiarity of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 54:2811–2819. https://doi.org/10.1007/s00125-011-2267-5
doi: 10.1007/s00125-011-2267-5
pubmed: 21826484
Pal A, McCarthy MI (2013) The genetics of type 2 diabetes and its clinical relevance. Clin Genet 83:297–306. https://doi.org/10.1111/cge.12055
doi: 10.1111/cge.12055
pubmed: 23167659
Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990. https://doi.org/10.1038/ng.2383
doi: 10.1038/ng.2383
pubmed: 22885922
pmcid: 3442244
Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589. https://doi.org/10.1038/ng.609
doi: 10.1038/ng.609
pubmed: 20581827
pmcid: 3080658
Bonnefond A, Froguel P, Vaxillaire M (2010) The emerging genetics of type 2 diabetes. Trends Mol Med 16:407–416. https://doi.org/10.1016/j.molmed.2010.06.004
doi: 10.1016/j.molmed.2010.06.004
pubmed: 20728409
Khera AV, Chaffin M, Aragam KG et al (2018) Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 50:1219–1224. https://doi.org/10.1038/s41588-018-0183-z
doi: 10.1038/s41588-018-0183-z
pubmed: 30104762
pmcid: 6128408
Vaxillaire M, Yengo L, Lobbens S et al (2014) Type 2 diabetes-related genetic risk scores associated with variations in fasting plasma glucose and development of impaired glucose homeostasis in the prospective DESIR study. Diabetologia 57:1601–1610. https://doi.org/10.1007/s00125-014-3277-x
doi: 10.1007/s00125-014-3277-x
pubmed: 24893864
Abraham G, Malik R, Yonova-Doing E et al (2019) Genomic risk score offers predictive performance comparable to clinical risk factors for ischaemic stroke. Nat Commun 10:5819. https://doi.org/10.1038/s41467-019-13848-1
doi: 10.1038/s41467-019-13848-1
pubmed: 31862893
pmcid: 6925280
Ming D, Shafqat A, Lu Q et al (2019) Additive and multiplicative interactions between genetic risk score and family history and lifestyle in relation to risk of type 2 diabetes. Am J Epidemiol 189(5):445–460
Walford GA, Porneala BC, Dauriz M et al (2014) Metabolite traits and genetic risk provide complementary information for the prediction of future type 2 diabetes. Diabetes Care 37:2508–2514. https://doi.org/10.2337/dc14-0560
doi: 10.2337/dc14-0560
pubmed: 24947790
pmcid: 4140156
Qi Q, Li H, Wu Y et al (2010) Combined effects of 17 common genetic variants on type 2 diabetes risk in a Han Chinese population. Diabetologia 53:2163–2166. https://doi.org/10.1007/s00125-010-1826-5
doi: 10.1007/s00125-010-1826-5
pubmed: 20556352
Inouye M, Abraham G, Nelson CP et al (2018) Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention. J Am Coll Cardiol 72:1883–1893. https://doi.org/10.1016/j.jacc.2018.07.079
doi: 10.1016/j.jacc.2018.07.079
pubmed: 30309464
pmcid: 6176870
Sudlow C, Gallacher J, Allen N et al (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12:e1001779. https://doi.org/10.1371/journal.pmed.1001779
doi: 10.1371/journal.pmed.1001779
pubmed: 25826379
pmcid: 4380465
Bycroft C, Freeman C, Petkova D et al (2018) The UK Biobank resource with deep phenotyping and genomic data. Nature 562:203–209. https://doi.org/10.1038/s41586-018-0579-z
doi: 10.1038/s41586-018-0579-z
pubmed: 30305743
pmcid: 6786975
Wheeler E, Leong A, Liu CT et al (2017) Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysis. PLoS Med 14:e1002383. https://doi.org/10.1371/journal.pmed.1002383
doi: 10.1371/journal.pmed.1002383
pubmed: 28898252
pmcid: 5595282
Scott RA, Lagou V, Welch RP et al (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44:991–1005. https://doi.org/10.1038/ng.2385
doi: 10.1038/ng.2385
pubmed: 22885924
pmcid: 3433394
Willer CJ, Schmidt EM, Sengupta S et al (2013) Discovery and refinement of loci associated with lipid levels. Nat Genet 45:1274–1283. https://doi.org/10.1038/ng.2797
doi: 10.1038/ng.2797
pubmed: 24097068
pmcid: 3838666
Evangelou E, Warren HR, Mosen-Ansorena D et al (2018) Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet 50:1412–1425. https://doi.org/10.1038/s41588-018-0205-x
doi: 10.1038/s41588-018-0205-x
pubmed: 30224653
pmcid: 6284793
Shungin D, Winkler TW, Croteau-Chonka DC et al (2015) New genetic loci link adipose and insulin biology to body fat distribution. Nature 518:187–196. https://doi.org/10.1038/nature14132
doi: 10.1038/nature14132
pubmed: 25673412
pmcid: 4338562
Locke AE, Kahali B, Berndt SI et al (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518:197–206. https://doi.org/10.1038/nature14177
doi: 10.1038/nature14177
pubmed: 25673413
pmcid: 4382211
Wood AR, Esko T, Yang J et al (2014) Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet 46:1173–1186. https://doi.org/10.1038/ng.3097
doi: 10.1038/ng.3097
pubmed: 25282103
pmcid: 4250049
Liu M, Jiang Y, Wedow R et al (2019) Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet 51:237–244. https://doi.org/10.1038/s41588-018-0307-5
doi: 10.1038/s41588-018-0307-5
pubmed: 30643251
pmcid: 6358542
Chang CC, Chow CC, Tellier LC et al (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7. https://doi.org/10.1186/s13742-015-0047-8
doi: 10.1186/s13742-015-0047-8
pubmed: 25722852
pmcid: 4342193
Bycroft C, Freeman C, Petkova D et al (2017) Genome-wide genetic data on ~500,000 UK Biobank participants. BioRxiv. https://doi.org/10.1101/166298
doi: 10.1101/166298
Hui Z, Hastie T (2005) Regularization and variable selection via the elastic net. J Roy Stat Soc 67:301–320
doi: 10.1111/j.1467-9868.2005.00503.x
Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22
doi: 10.18637/jss.v033.i01
Fine J, Gray R, Jason P (1999) A proportional hazards model for the subdistribution of competing risks in survival analysis. J Am Stat Assoc 94(446):496–509
doi: 10.1080/01621459.1999.10474144
Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA (1982) Evaluating the yield of medical tests. JAMA 247:2543–2546
doi: 10.1001/jama.1982.03320430047030
Si S, Tewara MA, Ji X et al (2020) Body surface area, height, and body fat percentage as more sensitive risk factors of cancer and cardiovascular disease. Cancer Med 9:4433–4446. https://doi.org/10.1002/cam4.3076
doi: 10.1002/cam4.3076
pubmed: 32342643
pmcid: 7300397
Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172. https://doi.org/10.1002/sim.2929
doi: 10.1002/sim.2929
pubmed: 17569110
Imamura M, Shigemizu D, Tsunoda T et al (2013) Assessing the clinical utility of a genetic risk score constructed using 49 susceptibility alleles for type 2 diabetes in a Japanese population. J Clin Endocrinol Metab 98:E1667–E1673. https://doi.org/10.1210/jc.2013-1642
doi: 10.1210/jc.2013-1642
pubmed: 23956346
Ridker PM, Buring JE, Rifai N, Cook NR (2007) Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the reynolds risk score. JAMA 297:611–619. https://doi.org/10.1001/jama.297.6.611
doi: 10.1001/jama.297.6.611
pubmed: 17299196
Fry A, Littlejohns TJ, Sudlow C et al (2017) Comparison of sociodemographic and health-related characteristics of uk biobank participants with those of the general population. Am J Epidemiol 186:1026–1034. https://doi.org/10.1093/aje/kwx246
doi: 10.1093/aje/kwx246
pubmed: 28641372
pmcid: 5860371