Pathological activation of CaMKII induces arrhythmogenicity through TRPM4 overactivation.


Journal

Pflugers Archiv : European journal of physiology
ISSN: 1432-2013
Titre abrégé: Pflugers Arch
Pays: Germany
ID NLM: 0154720

Informations de publication

Date de publication:
03 2021
Historique:
received: 29 09 2020
accepted: 16 12 2020
revised: 02 12 2020
pubmed: 5 1 2021
medline: 29 12 2021
entrez: 4 1 2021
Statut: ppublish

Résumé

TRPM4 is a Ca

Identifiants

pubmed: 33392831
doi: 10.1007/s00424-020-02507-w
pii: 10.1007/s00424-020-02507-w
doi:

Substances chimiques

TRPM Cation Channels 0
TRPM4 protein, human 0
Calcium-Calmodulin-Dependent Protein Kinase Type 2 EC 2.7.11.17

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

507-519

Subventions

Organisme : Swiss National Science Foundation
ID : 310030_184783
Pays : Switzerland

Références

Adachi-Akahane S, Cleemann L, Morad M (1996) Cross-signaling between L-type Ca
doi: 10.1085/jgp.108.5.435
Ardestani G, West MC, Maresca TJ, Fissore RA, Stratton MM (2019) FRET-based sensor for CaMKII activity (FRESCA): a useful tool for assessing CaMKII activity in response to Ca
doi: 10.1074/jbc.RA119.009235 pubmed: 31201271 pmcid: 6682743
Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA (2009) The δ isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci 106:2342–2347
doi: 10.1073/pnas.0813013106
Bagur R, Hajnoczky G (2017) Intracellular Ca
doi: 10.1016/j.molcel.2017.05.028 pubmed: 28622523 pmcid: 5657234
Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205. https://doi.org/10.1038/415198a
doi: 10.1038/415198a pubmed: 11805843
Claycomb WC, Lanson NA, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. P Natl Acad Sci U S A 95:2979–2984. https://doi.org/10.1073/pnas.95.6.2979
doi: 10.1073/pnas.95.6.2979
Dragún M, Gažová A, Kyselovič J, Hulman M, Máťuš M (2019) TRP channels expression profile in human end-stage heart failure. Medicina 55:380
doi: 10.3390/medicina55070380
Duan J, Li Z, Li J, Santa-Cruz A, Sanchez-Martinez S, Zhang J, Clapham DE (2018) Structure of full-length human TRPM4. Proc Natl Acad Sci U S A 115:2377–2382. https://doi.org/10.1073/pnas.1722038115
doi: 10.1073/pnas.1722038115 pubmed: 29463718 pmcid: 5877947
Gees M, Colsoul B, Nilius B (2010) The role of transient receptor potential cation channels in Ca
doi: 10.1101/cshperspect.a003962 pubmed: 20861159 pmcid: 2944357
Glynn P, Musa H, Wu XQ, Unudurthi SD, Little S, Qian L, Wright PJ, Radwanski PB, Gyorke S, Mohler PJ, Hund TJ (2015) Voltage-gated sodium channel phosphorylation at Ser571 regulates late current, arrhythmia, and cardiac function in vivo. Circulation 132:567–577. https://doi.org/10.1161/Circulationaha.114.015218
doi: 10.1161/Circulationaha.114.015218 pubmed: 26187182 pmcid: 4543581
Guinamard R, Demion M, Magaud C, Potreau D, Bois P (2006) Functional expression of the TRPM4 cationic current in ventricular cardiomyocytes from spontaneously hypertensive rats. Hypertension 48:587–594. https://doi.org/10.1161/01.HYP.0000237864.65019.a5
doi: 10.1161/01.HYP.0000237864.65019.a5 pubmed: 16966582
Heijman J, Voigt N, Nattel S, Dobrev D (2014) Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res 114:1483–1499. https://doi.org/10.1161/CIRCRESAHA.114.302226
doi: 10.1161/CIRCRESAHA.114.302226 pubmed: 24763466
Hof T, Simard C, Rouet R, Salle L, Guinamard R (2013) Implication of the TRPM4 nonselective cation channel in mammalian sinus rhythm. Heart Rhythm 10:1683–1689. https://doi.org/10.1016/j.hrthm.2013.08.014
doi: 10.1016/j.hrthm.2013.08.014 pubmed: 23954346
Hof T, Sallé L, Coulbault L, Richer R, Alexandre J, Rouet R, Manrique A, Guinamard R (2016) TRPM4 non-selective cation channels influence action potentials in rabbit Purkinje fibres. J Physiol 594:295–306
doi: 10.1113/JP271347
Hof T, Chaigne S, Recalde A, Salle L, Brette F, Guinamard R (2019) Transient receptor potential channels in cardiac health and disease. Nat Rev Cardiol 16:344–360. https://doi.org/10.1038/s41569-018-0145-2
doi: 10.1038/s41569-018-0145-2 pubmed: 30664669
Hu YP, Duan YB, Takeuchi A, Hai-Kurahara L, Ichikawa J, Hiraishi K, Numata T, Ohara H, Iribe G, Nakaya M, Mori MX, Matsuoka S, Ma G, Inoue R (2017) Uncovering the arrhythmogenic potential of TRPM4 activation in atrial-derived HL-1 cells using novel recording and numerical approaches. Cardiovasc Res 113:1243–1255. https://doi.org/10.1093/cvr/cvx117
doi: 10.1093/cvr/cvx117 pubmed: 28898995
Inoue R, Ito Y (2000) Intracellular ATP slows time-dependent decline of muscarinic cation current in guinea pig ileal smooth muscle. Am J Phys Cell Phys 279:C1307–C1318. https://doi.org/10.1152/ajpcell.2000.279.5.C1307
doi: 10.1152/ajpcell.2000.279.5.C1307
Jeevaratnam K, Chadda KR, Huang CL, Camm AJ (2018) Cardiac potassium channels: physiological insights for targeted therapy. J Cardiovasc Pharmacol Ther 23:119–129. https://doi.org/10.1177/1074248417729880
doi: 10.1177/1074248417729880 pubmed: 28946759
Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, Emery CM, Stransky N, Cogdill AP, Barretina J, Caponigro G, Hieronymus H, Murray RR, Salehi-Ashtiani K, Hill DE, Vidal M, Zhao JJ, Yang XP, Alkan O, Kim S, Harris JL, Wilson CJ, Myer VE, Finan PM, Root DE, Roberts TM, Golub T, Flaherty KT, Dummer R, Weber BL, Sellers WR, Schlegel R, Wargo JA, Hahn WC, Garraway LA (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–U370. https://doi.org/10.1038/nature09627
doi: 10.1038/nature09627 pubmed: 21107320 pmcid: 3058384
Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, Davidson MW, Schnitzer MJ, Tsien RY, Lin MZ (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9:1005–1012. https://doi.org/10.1038/nmeth.2171
doi: 10.1038/nmeth.2171 pubmed: 22961245 pmcid: 3461113
Luczak ED, Anderson ME (2014) CaMKII oxidative activation and the pathogenesis of cardiac disease. J Mol Cell Cardiol 73:112–116. https://doi.org/10.1016/j.yjmcc.2014.02.004
doi: 10.1016/j.yjmcc.2014.02.004 pubmed: 24530899
Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ Res 74:1097–1113. https://doi.org/10.1161/01.res.74.6.1097
doi: 10.1161/01.res.74.6.1097 pubmed: 7514510
Mathar I, Kecskes M, Van der Mieren G, Jacobs G, Camacho Londoño JE, Uhl S, Flockerzi V, Voets T, Freichel M, Nilius B (2014) Increased β-adrenergic inotropy in ventricular myocardium from Trpm4−/− mice. Circ Res 114:283–294
doi: 10.1161/CIRCRESAHA.114.302835
Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX (2005) Regulation of the Ca
doi: 10.1074/jbc.M411089200 pubmed: 15590641
Sag CM, Mallwitz A, Wagner S, Hartmann N, Schotola H, Fischer TH, Ungeheuer N, Herting J, Shah AM, Maier LS, Sossalla S, Unsold B (2014) Enhanced late INa induces proarrhythmogenic SR Ca leak in a CaMKII-dependent manner. J Mol Cell Cardiol 76:94–105. https://doi.org/10.1016/j.yjmcc.2014.08.016
doi: 10.1016/j.yjmcc.2014.08.016 pubmed: 25173923
Shy D, Gillet L, Ogrodnik J, Albesa M, Verkerk AO, Wolswinkel R, Rougier JS, Barc J, Essers MC, Syam N, Marsman RF, van Mil AM, Rotman S, Redon R, Bezzina CR, Remme CA, Abriel H (2014) PDZ domain-binding motif regulates cardiomyocyte compartment-specific NaV1.5 channel expression and function. Circulation 130:147–160. https://doi.org/10.1161/CIRCULATIONAHA.113.007852
doi: 10.1161/CIRCULATIONAHA.113.007852 pubmed: 24895455
Simard C, Sallé L, Rouet R, Guinamard R (2012) Transient receptor potential melastatin 4 inhibitor 9-phenanthrol abolishes arrhythmias induced by hypoxia and re-oxygenation in mouse ventricle. Br J Pharmacol 165:2354–2364
doi: 10.1111/j.1476-5381.2011.01715.x
Son MJ, Kim JC, Kim SW, Chidipi B, Muniyandi J, Singh TD, So I, Subedi KP, Woo SH (2016) Shear stress activates monovalent cation channel transient receptor potential melastatin subfamily 4 in rat atrial myocytes via type 2 inositol 1, 4, 5-trisphosphate receptors and Ca
doi: 10.1113/JP270887
Swaminathan PD, Purohit A, Hund TJ, Anderson ME (2012) Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 110:1661–1677. https://doi.org/10.1161/CIRCRESAHA.111.243956
doi: 10.1161/CIRCRESAHA.111.243956 pubmed: 22679140 pmcid: 3789535
Takeuchi A, Kim B, Matsuoka S (2013) The mitochondrial Na
doi: 10.1038/srep02766
Wang J, Takahashi K, Piao H, Qu P, Naruse K (2013) 9-Phenanthrol, a TRPM4 inhibitor, protects isolated rat hearts from ischemia-reperfusion injury. PLoS One 8:e70587. https://doi.org/10.1371/journal.pone.0070587
doi: 10.1371/journal.pone.0070587 pubmed: 23936231 pmcid: 3723883
Yang Z, Murray KT (2011) Ionic mechanisms of pacemaker activity in spontaneously contracting atrial HL-1 cells. J Cardiovasc Pharmacol 57:28–36. https://doi.org/10.1097/FJC.0b013e3181fda7c4
doi: 10.1097/FJC.0b013e3181fda7c4 pubmed: 20881602 pmcid: 3023001

Auteurs

Yaopeng Hu (Y)

Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan. huyaopeng@fukuoka-u.ac.jp.

Daniela Ross Kaschitza (DR)

Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bern, Switzerland.

Maria Essers (M)

Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bern, Switzerland.

Prakash Arullampalam (P)

Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bern, Switzerland.

Takayuki Fujita (T)

Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.

Hugues Abriel (H)

Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bern, Switzerland.

Ryuji Inoue (R)

Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan. inouery@fukuoka-u.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH