Cav3.1 t-type calcium channel is critical for cell proliferation and survival in newly generated cells of the adult hippocampus.
Cav3.1
T-type calcium channel
adult hippocampal neurogenesis
brain-derived neurotrophic factor
cell proliferation
cell survival
Journal
Acta physiologica (Oxford, England)
ISSN: 1748-1716
Titre abrégé: Acta Physiol (Oxf)
Pays: England
ID NLM: 101262545
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
revised:
29
12
2020
received:
30
09
2020
accepted:
30
12
2020
pubmed:
5
1
2021
medline:
8
7
2021
entrez:
4
1
2021
Statut:
ppublish
Résumé
Adult hippocampal neurogenesis plays an important role in neuronal plasticity and maintenance in mammals. Low-threshold voltage-gated T-type calcium channels produce calcium spikes that increase fast action potentials in newborn cells in the hippocampal dentate gyrus (DG); however, their role in adult hippocampal neurogenesis remains unclear. Here, we demonstrate impaired adult hippocampal neurogenesis in Cav3.1T-type calcium channel knockout mice. Cav3.1T-type calcium channel was predominantly localized in neuronal progenitor cells of the mouse hippocampal DG. By counting the number of 5-bromo-2'-deoxyuridine-labeled cells, decreased proliferation and survival of newly generated cells were observed in the adult hippocampal DG in Cav3.1 knockout mice as compared to wild-type (WT) mice. Moreover, the degree of maturation of doublecortin-positive cells in Cav3.1 knockout mice was lower than that in WT mice, suggesting that Cav3.1 deletion may impair neuronal differentiation. Consistent with impaired hippocampal neurogenesis, Cav3.1 knockout mice showed decreased social interaction. Reduced phosphorylation levels of calcium/calmodulin-dependent protein kinase II and protein kinase B were closely associated with impaired hippocampal neurogenesis in Cav3.1 knockout mice. Moreover, the mRNA and protein expression levels of brain-derived neurotrophic factor, important for neurogenesis, were significantly decreased in Cav3.1 knockout mice. Finally, gene ontology analysis revealed alterations in genes related to the promotion of cell death/apoptosis and suppression of cell proliferation/neuronal differentiation pathways, including Bdnf. These results suggest that the Cav3.1T-type calcium channel may be a key molecule required for cell proliferation, survival and neuronal differentiation in newly generated cells of the adult mouse hippocampus.
Substances chimiques
Calcium Channels, T-Type
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13613Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Références
Gould E, Tanapat P, McEwen BS, Flügge G, Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA. 1998;95(6):3168-3171.
Jessberger S, Gage FH. Adult neurogenesis: bridging the gap between mice and humans. Trends Cell Biol. 2014;24(10):558-563.
Snyder JS, Choe JS, Clifford MA, et al. Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J Neurosci. 2009;29(46):14484-14495.
Cope EC, Gould E. Adult neurogenesis, glia, and the extracellular matrix. Cell Stem Cell. 2019;24(5):690-705.
Lucassen PJ, Meerlo P, Naylor AS, et al. Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur Neuropsychopharmacol. 2010;20(1):1-17.
Miller SM, Sahay A. Functions of adult-born neurons in hippocampal memory interference and indexing. Nat Neurosci. 2019;22(10):1565-1575.
Gonçalves JT, Schafer ST, Gage FH. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell. 2016;167(4):897-914.
Lagace DC, Donovan MH, DeCarolis NA, et al. Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance. Proc Natl Acad Sci USA. 2010;107(9):4436-4441.
Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476(7361):458-461.
Gu Y, Arruda-Carvalho M, Wang J, et al. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci. 2012;15(12):1700-1706.
Cai Y, Zhong H, Li X, Xiao R, Wang L, Fan X. The liver X receptor agonist TO901317 ameliorates behavioral deficits in two mouse models of autism. Front Cell Neurosci. 2019;13:213.
Zhong H, Xiao R, Ruan R, et al. Neonatal curcumin treatment restores hippocampal neurogenesis and improves autism-related behaviors in a mouse model of autism. Psychopharmacology. 2020;237:3539-3552.
Kang E, Wen Z, Song H, Christian KM, Ming GL. Adult neurogenesis and psychiatric disorders. Cold Spring Harb Perspect Biol. 2016;8(9):a019026.
Li Y, Shen M, Stockton ME, Zhao X. Hippocampal deficits in neurodevelopmental disorders. Neurobiol Learn Mem. 2019;165:106945.
Lucassen PJ, Stumpel MW, Wang Q, Aronica E. Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology. 2010;58(6):940-949.
Boldrini M, Underwood MD, Hen R, et al. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology. 2009;34(11):2376-2389.
Wegiel J, Kuchna I, Nowicki K, et al. The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol. 2010;119(6):755-770.
Huguenard JR. Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol. 1996;58:329-348.
Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 2003;83(1):117-161.
Perez-Reyes E, Cribbs LL, Daud A, et al. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature. 1998;391(6670):896-900.
Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci. 1999;19(6):1895-1911.
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015;67(4):821-870.
Lattanzi D, Di Palma M, Cuppini R, Ambrogini P. GABAergic input affects intracellular calcium levels in developing granule cells of adult rat hippocampus. Int J Mol Sci. 2020;21(5):1715.
Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature. 2004;429(6988):184-187.
Xu J, Yabuki Y, Yu M, Fukunaga K. T-type calcium channel enhancer SAK3 produces anti-depressant-like effects by promoting adult hippocampal neurogenesis in olfactory bulbectomized mice. J Pharmacol Sci. 2018;137(4):333-341.
Kim JW, Oh HA, Lee SH, et al. T-type calcium channels are required to maintain viability of neural progenitor cells. Biomol Ther (Seoul). 2018;26(5):439-445.
Kim JW, Oh HA, Kim SR, et al. Epigenetically upregulated T-type calcium channels contribute to abnormal proliferation of embryonic neural progenitor cells exposed to valproic acid. Biomol Ther (Seoul). 2020;28(5):389-396.
Liu XB, Murray KD, Jones EG. Low-threshold calcium channel subunit Ca(v) 3.3 is specifically localized in GABAergic neurons of rodent thalamus and cerebral cortex. J Comp Neurol. 2011;519(6):1181-1195.
Weiss N, Black SA, Bladen C, Chen L, Zamponi GW. Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch. 2013;465(8):1159-1170.
Kita Y, Ago Y, Higashino K, et al. Galantamine promotes adult hippocampal neurogenesis via M₁ muscarinic and α7 nicotinic receptors in mice. Int J Neuropsychopharmacol. 2014;17(12):1957-1968.
Plümpe T, Ehninger D, Steiner B, et al. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation. BMC Neurosci. 2006;7:77.
Vega-Rivera NM, Ortiz-López L, Gómez-Sánchez A, Oikawa-Sala J, Estrada-Camarena EM, Ramírez-Rodríguez GB. The neurogenic effects of an enriched environment and its protection against the behavioral consequences of chronic mild stress persistent after enrichment cessation in six-month-old female Balb/C mice. Behav Brain Res. 2016;301:72-83.
Jover T, Tanaka H, Calderone A, et al. Estrogen protects against global ischemia-induced neuronal death and prevents activation of apoptotic signaling cascades in the hippocampal CA1. J Neurosci. 2002;22(6):2115-2124.
Malberg JE. Implications of adult hippocampal neurogenesis in antidepressant action. J Psychiatry Neurosci. 2004;29(3):196-205.
Vicidomini C, Guo N, Sahay A. Communication, cross talk, and signal integration in the adult hippocampal neurogenic niche. Neuron. 2020;105(2):220-235.
Cohen SM, Li B, Tsien RW, Ma H. Evolutionary and functional perspectives on signaling from neuronal surface to nucleus. Biochem Biophys Res Commun. 2015;460(1):88-99.
Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002;35(4):605-623.
Toth AB, Shum AK, Prakriya M. Regulation of neurogenesis by calcium signaling. Cell Calcium. 2016;59(2-3):124-134.
Yabuki Y, Jing X, Fukunaga K. The T-type calcium channel enhancer SAK3 inhibits neuronal death following transient brain ischemia via nicotinic acetylcholine receptor stimulation. Neurochem Int. 2017;108:272-281.
Shioda N, Yabuki Y, Yamaguchi K, et al. Targeting G-quadruplex DNA as cognitive function therapy for ATR-X syndrome. Nat Med. 2018;24(6):802-813.
Duckles H, Al-Owais MM, Elies J, et al. T-type Ca2+ channel regulation by CO: a mechanism for control of cell proliferation. Adv Exp Med Biol. 2015;860:291-300.
Huang W, Lu C, Wu Y, Ouyang S, Chen Y. T-type calcium channel antagonists, mibefradil and NNC-55-0396 inhibit cell proliferation and induce cell apoptosis in leukemia cell lines. J Exp Clin Cancer Res. 2015;34(1):54.
Zhang B, Chen L, Bai YG, et al. miR-137 and its target T-type CaV 3.1 channel modulate dedifferentiation and proliferation of cerebrovascular smooth muscle cells in simulated microgravity rats by regulating calcineurin/NFAT pathway. Cell Proliferation. 2020;53(3):e12774.
Fournier NM, Lee B, Banasr M, Elsayed M, Duman RS. Vascular endothelial growth factor regulates adult hippocampal cell proliferation through MEK/ERK- and PI3K/Akt-dependent signaling. Neuropharmacology. 2012;63(4):642-652.
Lory P, Bidaud I, Chemin J. T-type calcium channels in differentiation and proliferation. Cell Calcium. 2006;40(2):135-146.
Yamasaki N, Maekawa M, Kobayashi K, et al. Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol Brain. 2008;1:6.
Valerie NC, Dziegielewska B, Hosing AS, et al. Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells. Biochem Pharmacol. 2013;85(7):888-897.
Zheng Z, Chen H, Xie P, et al. α1G T-type calcium channel determines the angiogenic potential of pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol. 2019;316(3):C353-C364.
Wang H, Sun W, Ma J, Pan Y, Wang L, Zhang W. Polycystin-1 mediates mechanical strain-induced osteoblastic mechanoresponses via potentiation of intracellular calcium and Akt/β-catenin pathway. PLoS One. 2014;9(3):e91730.
Gocher AM, Azabdaftari G, Euscher LM, et al. Akt activation by Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in ovarian cancer cells. J Biol Chem. 2017;292(34):14188-14204.
Zhan CS, Chen J, Chen J, et al. CaMK4-dependent phosphorylation of Akt/mTOR underlies Th17 excessive activation in experimental autoimmune prostatitis. FASEB J. 2020;34:14006-14023.
Nuttall JR, Oteiza PI. Zinc and the ERK kinases in the developing brain. Neurotox Res. 2012;21(1):128-141.
Sun J, Nan G. The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review). Int J Mol Med. 2017;39(6):1338-1346.
Moriguchi S, Sakagami H, Yabuki Y, et al. Stimulation of sigma-1 receptor ameliorates depressive-like behaviors in CaMKIV null mice. Mol Neurobiol. 2015;52(3):1210-1222.
Temme SJ, Bell RZ, Fisher GL, Murphy GG. Deletion of the mouse homolog of CACNA1C disrupts discrete forms of hippocampal-dependent memory and neurogenesis within the dentate gyrus. eNeuro. 2016;3(6):1-14. ENEURO.0118-16.2016.
Nakajima K, Ito Y, Kikuchi S, et al. Developmental exposure to diacetoxyscirpenol reversibly disrupts hippocampal neurogenesis by inducing oxidative cellular injury and suppressed differentiation of granule cell lineages in mice. Food Chem Toxicol. 2020;136:111046.
Petrenko AB, Tsujita M, Kohno T, Sakimura K, Baba H. Mutation of alpha1G T-type calcium channels in mice does not change anesthetic requirements for loss of the righting reflex and minimum alveolar concentration but delays the onset of anesthetic induction. Anesthesiology. 2007;106(6):1177-1185.
Yabuki Y, Matsuo K, Izumi H, et al. Pharmacological properties of SAK3, a novel T-type voltage-gated Ca2+ channel enhancer. Neuropharmacology. 2017;117:1-13.
Yabuki Y, Wu L, Fukunaga K. Cognitive enhancer ST101 improves schizophrenia-like behaviors in neonatal ventral hippocampus-lesioned rats in association with improved CaMKII/PKC pathway. J Pharmacol Sci. 2019;140(3):263-272.
Homberg JR, Olivier JD, VandenBroeke M, et al. The role of the dopamine D1 receptor in social cognition: studies using a novel genetic rat model. Dis Model Mech. 2016;9(10):1147-1158.
Moriguchi S, Kita S, Yabuki Y, et al. Reduced CaM kinase II and CaM kinase IV activities underlie cognitive deficits in NCKX2 heterozygous mice. Mol Neurobiol. 2018;55(5):3889-3900.
Yabuki Y, Matsuo K, Kawahata I, et al. Fatty acid binding protein 3 enhances the spreading and toxicity of α-synuclein in mouse brain. Int J Mol Sci. 2020;21(6):2230.
Paxinos G, Franklin KBJ. The Mouse Brain in Stereotaxic Coordinates. San Diego: Academic; 2001.
Fukunaga K, Goto S, Miyamoto E. Immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase II in rat brain and various tissues. J Neurochem. 1988;51(4):1070-1078.